
 IB-11C001

MOTION CONTROL SYSTEMS, MSC SERIES JUNE 1995

Revision - E

Approved By:

Proprietary information of Industrial Indexing Systems, Inc. furnished for customer use only. No
other uses are authorized without the prior written permission of

Industrial Indexing Systems, Inc.

 INDUSTRIAL INDEXING SYSTEMS, Inc.

MACROPROGRAM
DEVELOPMENT

SYSTEM

INSTRUCTION MANUAL

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INDEX IB-11C001

JUNE 1995 Page 1

 TABLE OF CONTENTS

1.0 INTRODUCTION .. 6
 1.1 OVERVIEW ... 6
 1.2 MANUAL CONVENTIONS ... 6

2.0 INSTALLATION .. 7
 2.1 HARDWARE CONFIGURATION ... 7
 2.2 INSTALLATION... 8
 2.2.1 DUAL FLOPPY DISK SYSTEM... 8
 2.2.2 HARD DISK SYSTEM.. 8
 2.3 CONFIGURATION... 10

2.3.1 SYSTEM CONFIGURATION ... 13
2.3.2 COLOR CONFIGURATION.. 14

3.0 MPEDIT - MACRO PROGRAM EDITOR ... 17

3.1 INTRODUCTION.. 17
3.2 FILE MAINTENANCE .. 17
3.3 THE EDITING PROCESS.. 17
3.4 SPECIAL KEYBOARD KEYS.. 18
3.5 FUNCTION KEY FUNCTIONS.. 19
3.5.1 COPY/EXTRACT .. 19
3.5.2 PASTE... 19
3.5.3 SEARCH.. 19
3.5.4 REPLACE.. 20
3.5.5 APPEND FILE ... 20
3.5.6 FUNCTION DESCRIPTION.. 20
3.5.7 QUIT NO SAVE... 20
3.5.8 EXIT AND SAVE ... 20
3.5.9 GO TO LINE... 21
3.5.10 DISP ERRORS.. 21
3.5.11 NEXT ERROR... 21
3.5.12 INDENT ... 21
3.5.13 PREVIEW FILE ... 21
3.5.14 HELP ... 21
3.5.15 OOPS .. 21
3.5.16 SAVE POSITION .. 22
3.5.17 BACK TO POSITION .. 22
3.5.18 CLEAR LINE ... 22
3.5.19 CLEAR DISPLAY.. 22

4.0 MPCPL - MACRO PROGRAM COMPILER ... 23

4.1 INTRODUCTION.. 23
4.2 USING MPCPL... 23
4.3 MACROPROGRAM LINE FORMAT... 23
4.4 MACRO COMPILER OUTPUT FORMAT... 24
4.5 SPECIAL MPCPL INSTRUCTIONS.. 24

5.0 MPDEBUG - MACRO PROGRAM DEBUGGER ... 25

5.1 INTRODUCTION.. 25
5.2 USING MPDEBUG... 25
5.3 MPDEBUG CONVENTIONS... 26
5.4 MPDEBUG FUNCTIONS... 26

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INDEX

Page 2 JUNE 1995

5.4.1 READ FUNCTIONS .. 26
5.4.1.1 READ DATA.. 26
5.4.1.2 READ DATA CONTINUOUS ... 26
5.4.1.3 READ FLAG.. 26
5.4.1.4 READ FLAG CONTINUOUS.. 26
5.4.1.5 AXIS STATUS... 27
5.4.1.6 MACRO STATUS ... 27

5.4.2 WRITE FUNCTIONS... 27
5.4.2.1 WRITE DATA.. 27
5.4.2.2 WRITE DATA CONTINUOUS.. 27
5.4.2.3 WRITE FLAG .. 27
5.4.2.4 WRITE FLAG CONTINUOUS.. 27

5.4.3 TRACE FUNCTIONS .. 28
5.4.3.1 TRACE BEFORE.. 28
5.4.3.2 TRACE ABOUT .. 28
5.4.3.3 TRACE AFTER... 28
5.4.3.4 TRACE CURRENT... 28
5.4.3.5 STOP TRACE ... 29
5.4.3.6 READ TRACE... 29

5.4.4 MSC COMMANDS.. 29
5.4.4.1 STOP PROGRAM .. 29
5.4.4.2 RESET .. 29
5.4.4.3 SEND PROGRAM .. 29
5.4.4.4 START PROGRAM .. 29
5.4.4.5 PROM OPTIONS.. 29
5.4.4.6 TEST MODE ... 30
5.4.4.7 SET AUTOSTART.. 30

5.4.5 VIEW FUNCTIONS ... 30
5.4.5.1 SOURCE... 30
5.4.5.2 EQUATE TABLE... 30
5.4.5.3 LABEL TABLE... 30
5.4.5.4 CONSTANTS.. 31
5.4.5.5 DATA TABLE .. 31
5.4.5.6 LAST TRACE.. 31

5.4.6 BLOCK FUNCTIONS .. 31
5.4.6.1 READ DATA.. 31
5.4.6.2 WRITE DATA.. 31

6.0 INTRODUCTION TO MACROPROGRAMMING LANGUAGE ... 32

6.1 BASIC CONCEPTS ... 32
6.2 INSTRUCTION FORMAT.. 32
6.3 COMMENTS... 33
6.4 BLANK LINES .. 33
6.5 LABEL LINES... 33

7.0 COMPILER DIRECTIVES ... 35

7.1 DESCRIPTION... 35

8.0 FLAGS.. 36

8.1 DESCRIPTION... 36
8.2 TIMERS .. 47
8.3 FLAG INSTRUCTIONS.. 47

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INDEX IB-11C001

JUNE 1995 Page 3

9.0 ARITHMETIC INSTRUCTIONS .. 48
9.1 OVERVIEW .. 48
9.2 INTEGER ARITHMETIC.. 48
9.3 ARRAY MANIPULATION... 48
9.4 BYTE OPERATIONS ... 49
9.5 BIT ORIENTED OPERATIONS... 49
9.6 BUILT IN ARITHMETIC FUNCTIONS... 49
9.7 ARITHMETIC INSTRUCTION SUMMARY... 50

10.0 PROGRAM FLOW INSTRUCTIONS.. 51

10.1 DESCRIPTION... 51
10.2 BRANCHING INSTRUCTIONS... 51
10.3 SUBROUTINE CONTROL... 51
10.4 THE SELECT STATEMENT.. 52
10.5 PROGRAM FLOW INSTRUCTION SUMMARY... 53

11.0 MOTION INSTRUCTIONS.. 54

11.1 OVERVIEW .. 54
11.2 MSC CONVENTIONS AND MOTION TERMINOLOGY .. 54

11.2.1 POSITION DATA... 54
11.2.2 SPEED (VELOCITY) DATA .. 54
11.2.3 ACCELERATION DATA.. 54
11.2.4 GLOBAL AND LOCAL ZEROES .. 55

11.3 MOTION PREPARATION INSTRUCTIONS... 55
11.3.1 DIGITAL COMPENSATION.. 56

11.3.1.1 THE P TERM (PROPORTIONAL GAIN) ... 57
11.3.1.2 THE I TERM (INTEGRAL).. 57
11.3.1.3 THE D TERM (DIFFERENTIAL) .. 57

11.3.2 VELOCITY GAIN... 58
11.4 VELOCITY CONTROL INSTRUCTIONS.. 58
11.5 POSITIONING INSTRUCTIONS... 59
11.6 PIECEWISE PROFILES .. 59

11.6.1 DESCRIPTION .. 59
11.6.2 BUILDING PROFILE DATA TABLES... 60
11.6.3 PIECEWISE PROFILES AND MASTER SLAVE ... 62

11.7 READING CONTROLLER POSITION.. 63

12.0 INTERRUPTS.. 64

12.1 DESCRIPTION... 64
12.2 SOFTWARE INTERRUPTS .. 64
12.3 HARDWARE INTERRUPTS.. 65
12.4 INTERRUPT INSTRUCTIONS.. 66

13.0 MASTER SLAVE CONCEPTS.. 67

13.1 DESCRIPTION... 67
13.2 SIMPLE LOCK (ELECTRONIC GEARBOX)... 68

13.2.1 USEFUL FACTS ABOUT SIMPLE LOCK MODE.. 68
13.3 LOCK METHODS FOR SIMPLE LOCK.. 69

13.3.1 LOCK METHOD 1 ... 69
13.3.2 LOCK METHOD 4 ... 71
13.3.3 LOCK METHOD 6 ... 71

13.4 ELECTRONIC CAMS .. 71
13.4.1 MASTER SCALING... 72

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INDEX

Page 4 JUNE 1995

13.4.2 DATA SCALING .. 72
13.4.3 IMPORTANT NOTES REGARDING ELECTRONIC CAM.. 73
13.4.4 CALCULATING ELECTRONIC CAMS... 73

13.5 ELECTRONIC CAM LOCK METHODS.. 77
13.5.1 LOCK METHOD 0 ... 77
13.5.2 LOCK METHOD 5 ... 78
13.5.3 LOCK METHOD 8 ... 78
13.5.4 LOCK METHOD 9 ... 78

13.6 SAMPLE ELECTRONIC CAM APPLICATION ... 78
13.7 PIECEWISE LOCK .. 80
13.8 MASTER ANGLE BUS .. 80
13.8.1 MASTER ANGLE BUS CAUTIONS... 83
13.9 FIBER OPTIC NETWORK... 83
13.10 MASTER SLAVE INSTRUCTIONS... 89

14.0 PROGRAMMABLE LIMIT SWITCHES... 90

14.1 DESCRIPTION... 90
14.2 MSC-850/MCF-850 and MSC-250 PLS FUNCTIONS ... 90

14.2.1 PROGRAMMING .. 90
14.2.2 PROCESSING... 91
14.2.3 EXECUTION.. 91

14.3 HIGH PERFORMANCE PROGRAMMABLE LIMIT SWITCH (MSC-850/HPL-850)............................. 91
14.3.1 THEORY OF OPERATION... 92
14.3.2 PROGRAMMING CONSIDERATIONS.. 92

14.4 HPL-850 PROGRAMMING EXAMPLE #1.. 93
14.5 HPL-850 PROGRAMMING EXAMPLE #2.. 94
14.6 PROGRAMMABLE LIMIT SWITCH INSTRUCTIONS ... 95

15.0 EXTENDED MEMORY OPERATIONS .. 96

15.1 DESCRIPTION... 96
15.2 EXTENDED RAM MEMORY... 96

15.2.1 EXTENDED RAM MEMORY PROGRAMMING .. 96
15.2.2 EXTENDED MEMORY LIMITATIONS ... 97

15.3 EPROM MEMORY... 97
15.3.1 AUTOMATIC PROGRAM LOAD FROM EPROM ... 97
15.3.2 EPROM STATUS CODES.. 98

15.4 EPROM MANAGER INSTRUCTIONS.. 99

16.0 ANALOG INPUT/OUTPUT...100

16.1 DESCRIPTION..100
16.2 CAPABILITIES ..100
16.3 ACM-850 FUNCTIONAL DESCRIPTION ..100
16.4 POWER ON STATES...100
16.5 ACM-850 INSTRUCTIONS...101

17.0 USER SERIAL PORTS ..102

17.1 DESCRIPTION..102
17.2 SERIAL PORT INITIALIZATION ..102
17.3 IMPORTANT NOTES REGARDING SERIAL PORTS..103
17.4 SERIAL INSTRUCTIONS...105

18.0 INSTRUCTION REFERENCE ...106

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INDEX IB-11C001

JUNE 1995 Page 5

APPENDIX A Macroprogram Instruction Listing..300

APPENDIX B CUSTOM SERIAL PORT CONFIGURATION FOR THE MSC SOFTWARE TOOLKIT304

GLOSSARY OF TERMS ...305

INDEX...310

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INTRODUCTION IB-11C001

Page 6 JUNE 1995

 1.0 INTRODUCTION

 This document is part of a series of books that support Industrial Indexing Systems MSC family of motion

control systems. It provides information about the Macroprogram Development System which serves as a
tool to assist the user in development of motion control programs.

1.1 OVERVIEW

 The Macroprogram Development System is a software tool designed to provide an effective environment for

creating Macroprograms for the MSC family of motion controllers. Program development for the MSC
consists of creating and editing text files containing the appropriate program instructions, compiling these
files to generate executable programs, and on-line program debugging. In addition to these features, the
Macroprogram Development System provides aids for disk file maintenance and configuration.

 Highlights of the Macroprogram Development System are:

1. Simple entry and editing of programs.

2. Interaction between editing and compiling to quickly identify program lines containing errors.

3. On-line manual describing the purpose and format of each Macroprogramming Language

instruction.

4. File manager to simplify creating and deleting Macroprogram source files.

5. Comprehensive real time test and debug facility, including:
 a. Program tracing
 b .Inspection and modification of data values and input/outputs
 c. Monitoring of Controller status.

 The remaining sections of this book assume that you are familiar with the operation of your personal

computer. If you are not, please refer to your computer documentation.

1.2 MANUAL CONVENTIONS

 Throughout this manual, the following typeface conventions are used:

 1. Instruction names appear in bold print.

 2. Optional parameters appear in italics.

 3. MSDOS commands typed by the user appear in BOLD, all capitals.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTALLATION

JUNE 1995 Page 7

 2.0 INSTALLATION

2.1 HARDWARE CONFIGURATION

 The Macroprogram Development System (Toolkit) is designed to be used with an IBM compatible personal

computer.

 The Toolkit, like any IIS product, has its' own part number. Software part numbers are assigned using the

format SFO-NNNN RX where SFO-NNNN indicates the software part number and RX indicates the revision.
 Whenever the Toolkit is significantly changed, a new part number is assigned. There are several versions
of the Toolkit currently in use.

 The minimum recommended hardware configuration necessary for using the Macroprogram Development

System, part numbers SFO-3040, SFO-3076, SFO-3082 or SFO-3110 is listed below:

 Computer:IBM PC, XT, or AT computer, or compatible ס
 Disk Storage:Dual 720K disk drives or single 720K disk drive with hard disk ס
 Display:Monochrome, CGA, EGA or Hercules Display ס

 Memory:Minimum 512K bytes user memory ס
 Comm Ports:Asynchronous communications adapter(RS232C serial interface) ס

 Op Sys:MS-DOS revision 2.0 or later ס

 The Macroprogram Development System, part number SFO-3136, was released primarily for the support of

the MSC-850/32 Controller. Since this controller allows for programs up to 64,000 bytes and with additional
data storage of 64,000 bytes, the Toolkit memory requirements increased dramatically. The minimum
recommended hardware configuration necessary for using this version of the Toolkit is as follows:

 Computer:IBM PC AT computer with 286, 386 OR 486 processor, or compatible ס
 Disk Storage:Dual 720K disk drives or single 720K disk drive with hard disk ס
 Display:Monochrome, CGA, EGA or Hercules Display ס

 Memory:Minimum 640K bytes of base user memory and an additional 2MB of extended and/or ס
expanded memory

 Comm Ports:Asynchronous communications adapter(RS232C serial interface) ס
 Op Sys:MS-DOS revision 5.0 or later ס
 Clock rate: 16 Mhz or higher ס

 NOTE

Not all PC systems advertised as being "IBM PC
compatible" are 100% compatible. The Toolkit may
not work on systems which are not truly 100% IBM
PC compatible.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTALLATION IB-11C001

Page 8 JUNE 1995

2.2 INSTALLATION

 The Toolkit is normally supplied on a 3.5", 720 Kbyte diskette. The diskette will be identified with an SFO

(System Functional Operation) number which identifies the Toolkit and the current revision level.

2.2.1 DUAL FLOPPY DISK SYSTEM

 To install the Toolkit on a dual floppy system, perform the following steps:

 1. Obtain two blank, formatted diskettes. One diskette will be used to make a working copy of the IIS

Toolkit diskette. The second diskette will serve to store the programs you will develop.
 2. Power up your computer and load the MSDOS operating system.
 3. When the A> prompt appears on the screen, place one of the blank diskettes in the B diskette drive,

and place the Toolkit diskette in the A drive.
 4. Type the following command and press the Enter key.

 COPY A:*.* B:/V

 This command instructs MSDOS to copy the Toolkit diskette from drive A to drive B and to verify

that all information was copied correctly.
 5. Remove the IIS Toolkit diskette from drive A and store it in a safe place. Remove the copy from

drive B and label it with the appropriate SFO number.
 6. Place the working diskette in drive A and the blank data diskette in drive B.
 7. Type IIS and press the Enter key.
 8. After a few seconds, the initial Toolkit screen should appear. Proceed to the Configuration section

of this chapter for further instructions.

2.2.2 HARD DISK SYSTEM

 To install the Toolkit on a hard disk system, perform the following steps. These instructions assume that

your hard disk is designated as drive C. If your hard disk is designated by a different letter, use that letter in
place of C in the instructions below.

 1. Power up your computer and load the MSDOS operating system.

 2. It is recommended that the Toolkit be installed in a subdirectory rather than in the root directory of

your disk. Create a subdirectory named TOOLKIT by typing the following command and pressing
the Enter key.

 MKDIR \TOOLKIT

 3. It is suggested that you create a subdirectory to contain the programs you will develop using the

Toolkit. For example, to create a subdirectory called MACROS, type the following command,
followed by the Enter key:

 MKDIR \MACROS

 4. Place the Toolkit diskette in floppy drive A.

 5. To copy the Toolkit programs to your hard drive, type the following command, followed by the Enter

key:
 COPY A:*.* \TOOLKIT /V

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTALLATION

JUNE 1995 Page 9

 This command instructs MSDOS to copy the Toolkit diskette from drive A to the \TOOLKIT
subdirectory on your hard drive and to verify that all information was copied correctly.

 6. Log on to the TOOLKIT directory by typing the following command and then pressing the Enter key.

 CD \TOOLKIT

 7. Type IIS and press the Enter key.

 8. After a few seconds, the initial Toolkit screen should appear. Proceed to the Configuration section

of this chapter for further instructions.

 9. For subsequent use of the Toolkit, repeat steps 6 and 7.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTALLATION IB-11C001

Page 10 JUNE 1995

2.3 CONFIGURATION

 If you are using the Toolkit with part number SFO-3136, a "banner" similar to the one below will be displayed

for a few seconds, on Toolkit startup:

 Extended-DOS Power by
 Phar Lap's 286|DOS-Extender(tm) Version 2.1
 Copyright 1991 Phar Lap Software Inc.
 Available Memory = XXXX Kb

 Figure 2.1 - BANNER SCREEN

 A software "shell" package is used by the Toolkit in order to access the extended and/or expanded memory

in your computer. The "banner" is displayed by this "shell" software package, indicating the manufacturers
name, the software "shell" package name, revision and available memory.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTALLATION

JUNE 1995 Page 11

If you are using a Toolkit with part number SFO-3110 or SFO-3136, you may be prompted to select the
"memory model" to be used for the development of your programs. A screen similar to Figure 2.2 may be
displayed.

 The first configuration screen allows you to select the appropriate macroprogram memory size based on

your MSC system. See Figure 2.2.

 STANDARD will accommodate any MSC system as long as your macroprogram is smaller than 16K bytes

(PROGRAM + DATA).

 MEDIUM would be selected if you are using a MSC-250 and your macroprogram is larger than 16K bytes

program + data. The program may not exceed 32K bytes (PROGRAM + DATA).

 LARGE is used for the MSC-850/32 system when your macroprogram size exceeds 16K bytes

program + data. The program may not exceed either 64K Program and 64K Data.

 Figure 2.2 - MSC MEMORY SELECTION SCREEN

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTALLATION IB-11C001

Page 12 JUNE 1995

 Generally speaking, if you are creating programs for use with the MSC-850/32 and the program and or data
is expected to exceed 16K bytes, you should select the LARGE memory model.

 If you are creating programs for use with any other MSC type controller, the STANDARD memory model

should be selected, since the sum of the program and data areas cannot exceed 16K bytes anyway.

 The Toolkit provides a configuration subsystem that allows you to tailor the Toolkit to your computer. There

are two steps to the configuration process. System Configuration covers various options such as specifying
where your program files are to be stored, maximum program size in lines, etc. Color Configuration allows
you to customize screen colors and characteristics.

 Figure 2.3 - TOOLKIT STARTUP SCREEN

 Figure 2.3 shows the Toolkit startup screen. Note that the first selection on the screen, MPEDIT/MPCPL,

will be highlighted by an inverse video bar. This bar can be moved from one selection to another by using
the up and down arrow keys. To activate the desired selection, press the Enter key.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTALLATION

JUNE 1995 Page 13

2.3.1 SYSTEM CONFIGURATION

 The System Configuration option of the Toolkit allows you to set up certain Toolkit default characteristics.

These characteristics are usually only set up once, and the configuration will not need to be selected again
unless the characteristics change. The System Configuration screen is shown in Figure 2.4.

 Figure 2.4 - SYSTEM CONFIGURATION SCREEN

 The configuration characteristics are as follows:

 1. Disk, directory and path selection for program file storage and retrieval.

 The disk selected must be a valid disk on your computer system. Directory and path selection are

optional, but if chosen, they too must be valid directories on your computer system. Refer to your
computer handbooks or manual for more information on the valid disk and directory names for your
computer.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTALLATION IB-11C001

Page 14 JUNE 1995

2. Save Intermediate Files on Disk (Y/N)

 During program compilation, the Toolkit creates a number of temporary files which are used during

program debugging. If this option is set to N, these temporary files are kept only in memory. This
speeds up the compilation process. However, if you exit the Toolkit, and at a later time, wish to
further test your Macroprogram, the compilation process must be repeated to recreate the
temporary files. Setting the option to Y causes the temporary files to be written to disk, as well as
kept in memory.

 3. Expanded Listing (Y/N)

 During program compilation, the development system will, if requested, produce a detailed program

listing file. This listing includes tables for the following: all constants, all data variables, all equates,
and all instruction labels. The listing also shows all the source program instructions and their
compiled "machine" codes. This listing is not required for successful program execution and
considerable savings in compilation time and disk storage space can be realized if the listing is
omitted.

 4. Communications Port Number (1 - 16)

 Many computers have more than one serial communications port available. You may select the

appropriate port for your system by entering the appropriate port number. The Toolkit will
automatically configure the communications port to the proper settings. Refer to your computer
handbook or manual for information on serial communications with your computer. If you are using
a port other than 1 or 2, please contact IIS for an application note on non-standard communications
ports.

 5. RS485 Address (0 - 15)

 If you are using RS485 multi-drop communications, enter the device address that was set up on the

MSC controller card. Refer to the instruction book for the type of MSC controller being used.

 You can move from field to field on the CONFIGURATION screen by using the Enter key and/or the TAB

and SHIFT/TAB keys. Once you have made the appropriate entries, you can press the ACCEPT DATA
softkey and these selections will be recorded onto your disk. If you decide not to change these selections,
you can press the EXIT CONFIG softkey and the system will return to the Macroprogram Development
system selection menu.

2.3.2 COLOR CONFIGURATION

 The Color Configuration option of the Toolkit allows the user to customize the colors and/or video

enhancements displayed on the computer screen. Selecting this option shows the form displayed in Figure
2.5. The left side of the screen will display eight lines of A's, illustrating the various enhancements and
colors that your system is capable of displaying. The right side of the screen represents a miniature Toolkit
screen. As you choose various display options, this side of the screen will change accordingly.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTALLATION

JUNE 1995 Page 15

 Figure 2.5 - COLOR CONFIGURATION SCREEN

 There are six different options which can be set using Color Configuration:

 TEXT Controls the enhancement for lines 4 through 21 of the screen.

 FUNCTION KEYS Controls the enhancement for the function key labels displayed at the bottom of the

screen.

 LINE 1 Controls the enhancement for the top line of the screen. This line normally

contains the name of the program being developed, the Toolkit banner, and the
date.

 LINE 2 Controls the enhancement for the second line of the screen. This line is normally

used for system messages and user input.

 LINE 3 Controls the enhancement for the third line of the screen. This line is normally

used for system messages and user input.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTALLATION IB-11C001

Page 16 JUNE 1995

CURSOR Controls the enhancement for the higlight bar which appears on certain screens
and is moved about using the cursor arrow keys.

 To change the enhancement for a particular item, press function key F4 until its label displays the option

name. Notice that, on the left side of the screen, a small arrow appears over the A which has the current
enhancement. Use the cursor arrow keys to move the small arrow to the desired enhancement. Repeat
this step for each change you wish to make. When you are satisfied with your choices, press F1, SAVE
CONFIG. Your changes will then be recorded.

 WARNING

It is possible to change enhancements so that some
or all of the Toolkit screen will not be displayed.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MPEDIT IB-11C001

JUNE 1995 Page 17

 3.0 MPEDIT - MACRO PROGRAM EDITOR

3.1 INTRODUCTION

 MPEDIT is a full screen program editor which provides the ability to enter Macroprograms into computer

memory and to make modifications simply and effectively.

3.2 FILE MAINTENANCE

 To use MPEDIT, it is necessary either to select a currently existing program file, or choose to create a new

one. These functions are performed by selecting the Create/Select File function from the main menu of the
Toolkit. This function will cause a list of any Macroprograms resident on the current data path to be
displayed. At this point, you may:

 1. Choose an existing Macroprogram file by moving the highlight bar to the desired program and

pressing the Enter key.
 2. Create a new Macroprogram by pressing F4. The Toolkit then asks for the desired file name. Type

the file name, followed by the Enter key. File names can consists of letters and numbers. Do not
use blank spaces in file names. MPEDIT automatically assigns the .prg extension to the file name
you choose.

 3. Delete an existing Macroprogram file by moving the highlight bar to the desired program and
pressing F2. The system will prompt you to be sure you wish to delete the file. Answer by pressing
the Y key or the N key accordingly.

 After you create or select a file for editing, the Toolkit takes a few seconds to create or read the file and then

returns to the main Toolkit menu. At this point, you may choose the MPEDIT option from the menu and
press the Enter key.

3.3 THE EDITING PROCESS

 Entering Macroprograms with MPEDIT is much like using the computer keyboard as a typewriter. Just type

the program line as you would like it to appear, and press the Enter key when each line is complete. Note
that as you type the line, it appears in the highlight bar on your screen. When the return key is pressed, the
highlight bar moves down to the next line and the line you typed appears normally. Entering new lines or
making corrections always occurs within the highlight bar.

 Within this manual, the location of the highlight bar will be referred to as the current line. Within the current

line, there will be a blinking underline character, referred to as the cursor.

 When typing a line, corrections can be made by backspacing until the cursor is under the error, and retyping

the correct information. When making corrections, it is NOT necessary to press the Enter key after the
correction.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MPEDIT

Page 18 JUNE 1995

3.4 SPECIAL KEYBOARD KEYS

 Table 3.1 - SPECIAL FUNCTION KEY FEATURES

KEYFUNCTION

Down Arrow moves current line bar down one line

PgDn display next page of text

Up Arrow moves current line bar up one line

PgUp display previous page of text

Right Arrow moves cursor one space to the right

Left Arrow moves cursor one space to the left

SHIFT/DELETE deletes line at the cursor

SHIFT/INSERT I nserts a blank line

HOME moves to the top of the program

END moves to the bottom of the program

INSERT turns on insert character mode. Characters subsequently typed will be

inserted at the cursor position. Press INSERT again to turn off insert mode

DEL the character at the current cursor location is deleted

F9 changes from one set of function key definitions to another

TAB moves the cursor to the next tab stop, tab stops are every eight columns

SHIFT/TAB moves the cursor to the previous tab stop

 Certain keyboard keys aid in the editing process by performing special functions. These keys, along with

their functions, are described in Table 3-1.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MPEDIT IB-11C001

JUNE 1995 Page 19

 NOTE

On certain extended function keyboards, a separate set of cursor control and
page control function keys are provided. Usually, the SHIFT/INSERT and
SHIFT/DELETE functions do NOT work with this second set of keys. This is
because the status of the SHIFT key is not transmitted to the computer for
these keys.

3.5 FUNCTION KEY FUNCTIONS

 The function key functions provided by MPEDIT enable you to perform more sophisticated editing with only

a few keystrokes. Each function key function is described in detail in this section.

3.5.1 COPY/EXTRACT

 This key provides a means of "snipping" out a piece of text which can be later added to a different location.

To use COPY/EXTRACT, move the current line to the first line you wish to copy or extract and press the
COPY/EXTRACT function key. The function key labels will change so that key 1 says COPY TO HERE,
key 4 says EXTRACT TO HERE and key 8 says EXIT. Using the down arrow, move the current line to the
end of the area you wish to copy. Notice that all the lines in the selected range are highlighted. When you
reach the last line of the copy area, press the key marked COPY TO HERE or the key labeled EXTRACT
TO HERE. The display will return to normal. A copy of the lines within the selected range has now been
placed in a holding area so that the copy may be "pasted" into the program in another location.

 The copy portion of the COPY/EXTRACT function also works with the PREVIEW FILE function, allowing

you to copy lines from another file into the one being edited.

3.5.2 PASTE

 This function allows a section of text which has been "snipped" out using the COPY/EXTRACT function to

be placed at any desired location in the program. Move the current line bar to the desired location and press
the PASTE function key. The copied lines will be inserted into the program above the current line bar.

3.5.3 SEARCH

 This function allows you to search throughout the text of your program for a particular sequence of

characters. Pressing this function key causes MPEDIT to request the character string you wish to search
for. Type the characters and press the Enter key. Searching begins at the line following the current line and
continues until the desired string is found. If the requested string is found, the current line is moved to the
line containing the string. If the requested string is not located, the message "Not Found" is displayed.

 Subsequent search requests will cause the previous search string to the displayed under the message

"Enter Search String". Simply press the Enter key to search for the same string again. To search for a new
string, type it over the top of the old string. Be sure to blank out any excess characters from the old string.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MPEDIT

Page 20 JUNE 1995

3.5.4 REPLACE

 The replace function works in a manner similar to the search function, except that the replace function

allows you to replace the search string with a new sequence of characters. For example, the replace
function could be used to change all occurrences of the string "Axis_1" to "Axis_2".

 Pressing this function key causes MPEDIT to first ask for the search string and then for the replace string.

Searching then begins. If the search string is located, four function key options are presented:

 (F4) ALL - Changes all occurrences of the search string to the replace string without intervention.

 (F5) REPLACE - Changes this occurrence and begins searching for the next one.

 (F6) SKIP - leaves this occurrence unchanged and begins searching for the next one.

 (F8) RETURN TO EDIT - Returns to the editing mode.

3.5.5 APPEND FILE

 This function will add the contents of a specified macroprogram source file to the end of the program

currently being edited. Pressing this key will cause MPEDIT to ask for the name of the program file to be
appended. Type the name and press the Enter key. The BROWSE FILES capability can also be used with
APPEND.

3.5.6 FUNCTION DESCRIPTION

 Pressing this function key will display the current list of Macroprogram instructions. To view the details of an

individual instruction, position the highlight by using the up and down arrow keys to the desired instruction
and press the Enter key. To exit from these descriptions, press the EXIT DESCRIPT function key.

3.5.7 QUIT NO SAVE

 Pressing this function key exits from this session of editing and returns to the Macroprogram Development

System selection menu without saving changes made during this edit session. The message

 WARNING: FILE WILL NOT BE SAVED. ARE YOU SURE?

 will be displayed. If a Y is typed, the original program file is reloaded from the disk, and changes are

discarded. An N response will return control to the edit mode.

3.5.8 EXIT AND SAVE

 Pressing this key also exits from this session of editing. However, all changes made during this edit session

will be saved onto disk. Before rewriting the edited file to disk, the system prompts for a file name. The
current name is shown as a default. To save the new program under the same file name as the original,
press the Enter key. If you wish to assign a new file name, type the new name over the top of the old name.

 When the Toolkit saves the file, it renames the original copy from "filename".PRG to "filename".BAK. In this

way you have at least one backup copy.

 If any changes were made to the program during the editing session, the Toolkit will automatically invoke

MPCPL to compile the program.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MPEDIT IB-11C001

JUNE 1995 Page 21

3.5.9 GO TO LINE

 Moves the highlight bar to a specific line number. This function can be used with the error printout from the

MSC Macroprogram Compiler to quickly move to a specific line.

3.5.10 DISP ERRORS

 When the MSC Macroprogram Compiler is used to compile a Macroprogram, it produces a list of any errors

found. MPEDIT will read this list if it is present, and display the message "Errors Found" on the screen when
it starts up. If you wish to review the error list, press the DISP ERRORS function key. This function key
does not appear if no error list exists for the program being edited.

3.5.11 NEXT ERROR

 This function key is used after a Macroprogram has been compiled. It functions like the search key, except

that is causes MPEDIT to move to the next line containing an error. Note that lines containing errors will
normally be shown as blinking on the screen (some monitors are incapable of displaying blinking
characters).

 This function key does not appear if no error file exists or the error file is empty for the program being edited.

3.5.12 INDENT

 This function will align the instructions in a Macroprogram into formatted columns. Labels in column 1,

instructions in column 16, parameters in column 31 and comments in column 61. Column formatting is NOT
required for successful program compilation and execution.

3.5.13 PREVIEW FILE

 This function provides a means of reviewing the contents of one file while editing another. A section of the

reviewed file may be copied into the file being edited in a manner similar to the COPY/EXTRACT function.
PREVIEW FILE can be useful to inspect other macro programs similar to the one being edited. To use the
preview function, press the corresponding function key. MPEDIT will respond by asking for a file name to
preview. Type the desired file name and press Return. Note that the BROWSE FILES function can be used
to select a file for previewing. It is also possible to use the COPY portion of COPY/EXTRACT to copy lines
from a file being previewed into the program currently being edited.

3.5.14 HELP

 Pressing this key will display an abbreviated screen listing of the functions of special keyboard keys. By

using the PgDn and PgUp keyboard keys, you can view further information concerning MSC flags, I/O
definitions, and status words. Press the EXIT function key to return to the editing screen.

3.5.15 OOPS

 This function allows the last line of text deleted to be added back. This function is only available in the IBM

PC version and works only if the line was deleted using the SHIFT/DEL keyboard keys.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MPEDIT

Page 22 JUNE 1995

3.5.16 SAVE POSITION

 This function allows you to mark a line in the file to return to should you wish to perform other functions on

the remainder of the file. This function is used in conjunction with the BACK TO POSITION function. An
example of the use of this feature is: You are presently at the fiftieth line of a given file and you now wish to
search through the entire file for a particular character string. Following the search however, you wish return
to the fiftieth line. You would press the SAVE POSITION function key, then proceed to do your search.
When the search was completed, you would press the BACK TO POSITION function key.

3.5.17 BACK TO POSITION

 This function is used in conjunction with the SAVE POSITION and allows you to reposition the current line

indicator to the previously marked (SAVED) line. Refer to Section 3.5.16 above for an example of the use of
this function key.

3.5.18 CLEAR LINE

 This function allows you to erase a portion of a line or even an entire line. Position the cursor to the desired

character. Now press this function key and all characters from the cursor to the right end of the line will be
erased. This feature is only available in the IBM PC version.

3.5.19 CLEAR DISPLAY

 This function key allows you to erase the entire edit work area. Be very careful when using this feature as

there is no way to restore the work area other than using the QUIT NO SAVE function.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MPCPL

JUNE 1995 Page 23

 4.0 MPCPL - MACRO PROGRAM COMPILER

4.1 INTRODUCTION

 The Macroprogram Compiler (MPCPL) converts MSC Macroprograms from human readable instructions to

numeric codes which can be interpreted and acted upon by the MSC. The Compiler is automatically
executed on exiting from MPEDIT, or prior to running the debugger if the system cannot find the machine
control program file for the program you are editing.

 In addition, MPCPL produces information which is used by the Macroprogram Editor (MPEDIT) and

Macroprogram Debugger (MPDEBUG) to simplify the programming and testing processes. Optionally,
MPCPL may also produce a detailed program listing file.

4.2 USING MPCPL

 MPCPL is invoked automatically by the Toolkit whenever compilation is necessary.

4.3 MACROPROGRAM LINE FORMAT

 Macroprogram lines can be made of up to four (4) parts, as shown in figure 4.1. These parts are:

 Figure 4.1 - MACROPROGRAM INSTRUCTION FORMAT

 label instruction parameters comment

 1 .Label - A label can be from one (1) to twelve (12) characters in length, and may consists of both

upper and lower case letters, numbers and the underscore character. Labels must begin in column
1 of the program line. Labels are optional. If no label is used, at least one blank must be at the
beginning of the line.

 2. Instruction - This part of the line consists of any valid Macroprogram Language command.

Instructions must be typed in lower case letters. At least one blank must precede the instruction
and at least one blank must follow the instruction.

 3. Parameters - This part of the program line consists of the information, if any, processed by the

instruction. It must be separated from the instruction by one or more spaces.

 4. Comment - This field can contain any explanatory information about the program line. It must be

separated from the preceding field by at least one blank. Program lines which contain only
comments must have an exclamation point (!) in column 1.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MPCPL IB-11C001

Page 24 JUNE 1995

4.4 MACRO COMPILER OUTPUT FORMAT

 MPCPL produces the following outputs:

 1. Listing File (Optional) - The listing consists of:

 a. An EQUATE Table - This table lists all symbols defined in equ statements. Its contents are

symbol name, decimal symbol value, and hexadecimal symbol value.

 b. A LABEL Table - This table contains all program statement labels and their equivalent

addresses.

 c. A CONSTANTS Table - This consists of a list of all constants used. This table

consists only of address and values.

 d. A DATA Table - This table contains all the data variables used in the macroprogram. Each

entry in this table consists of the variable name, followed by its address in both decimal and
hexadecimal formats.

 e. A PROGRAM Listing - This portion consists of a listing of each program line together with

the MSC numerical equivalent of the program line. Any errors detected in a program line
will be listed just after the line containing the error.

 2. Error Summary File - This automatically created file contains a summary of any errors detected in

the compilation process. It is used by MPEDIT to assist in locating and correcting errors.

 3. Symbol Table File - This optional diskette file contains all symbol, label, and data definitions. It is

used by MPDEBUG to assist in the debugging process.

 4. Binary Program File - This file contains the compiled program in MSC Machine Instruction Format.

It can be transmitted to the MSC by MPDEBUG (or other programs), and the MSC can perform the
instructions contained in it.

 5. Debugger File - This file contains information used by MPDEBUG to translate trace information into

source program lines.

4.5 SPECIAL MPCPL INSTRUCTIONS

 MPCPL recognizes certain instructions which are not acted upon by the MSC, but simplify the process of

defining data and constants. Chapter Six of this manual contains a description of these statements.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MPDEBUG

JUNE 1995 Page 25

 5.0 MPDEBUG - MACRO PROGRAM DEBUGGER

5.1 INTRODUCTION

 The Macroprogram Debugger (MPDEBUG) provides a means of transmitting a compiled MSC

Macroprogram from a personal computer to the MSC and monitoring its execution. MPDEBUG provides the
ability to:

 1. Inspect and modify values in the Macroprogram data area.

 2. Test and modify the status of MSC flags.

3. Trace program flow and execution.

4. Test the MSC Macroprogram status word.

5 .Inspect the status of each motor axis card.

6. Review program source file, listing file, symbol table, error file.

7. Transfer the resident Macroprogram to an EPROM chip via the PROM POCKET.

 8. Place each Axis Controller in the MSC System Unit into Test Mode.

 MPDEBUG is able to reference information using the symbols which were used when the Macroprogram

being debugged was written. This simplifies the debug process by eliminating the need to converse in
decimal or hexadecimal numbers.

 This chapter describes the use and features of MPDEBUG.

 NOTE

The MSC controller must be connected to your
computer before selecting MPDEBUG from the
Macroprogram Development system selection
menu. See IB11C001, the MSC-850 System Unit,

for cable information.

5.2 USING MPDEBUG

 MPDEBUG is accessed from the main Toolkit menu by highlighting the appropriate option and pressing the

Enter key. MPDEBUG will verify that an MSC controller is connected to the serial port specified in System
Configuration, and if so, will continue to the main MPDEBUG screen.

 The top line of the main MPDEBUG screen, shows the name of the program currently residing in the MSC (if

any), and the current status of the MSC. Initially, this status is STARTUP. The current status of the MSC
and its card configuration will be displayed on the lower portion of the display. (See Section 5.4.1.6 on
MACRO STATUS below).

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MPDEBUG IB-11C001

Page 26 JUNE 1995

5.3 MPDEBUG CONVENTIONS

 Many MPDEBUG commands request data values, flag numbers, etc. These values may be typed in either

numerically or as valid labels as defined in the Macroprogram source. For example, if the Macroprogram
source defined axis 1 as "rotor", the word "rotor" could be used as a response when requesting the status of
axis 1. MPDEBUG Data values may be entered as numbers or as valid arithmetic expressions. For
example, to express 3.5 motor turns, where 4096 bits represents one motor turn, the expression

 3.5*4096

 could be entered. MPDEBUG will perform the computation and use the result.

 One function of MPDEBUG is available at all times. This is STOP PROGRAM. The STOP PROGRAM

function commands the MSC to stop executing the current Macroprogram and to send a f_decel instruction
to all Controller cards.

5.4 MPDEBUG FUNCTIONS

 The functions of MPDEBUG are broken into 6 sections. Each section and the functions it provides is

described below. To select one of the major function areas, press its associated function key. To return to
the main MPDEBUG menu, press the F9 function key.

5.4.1 READ FUNCTIONS

 The READ functions provide a means of retrieving information from the MSC and displaying it on the

computer's screen.

5.4.1.1 READ DATA

 This function reads data from the MSC data area. Selecting READ DATA, will cause MPDEBUG to ask for

a data address. Enter the address symbolically or numerically. MPDEBUG will read the data from the
appropriate location in the MSC and display its value in decimal and in hexadecimal. You may continue in
this function by typing another address, or exit by pressing the EXIT READ function key.

5.4.1.2 READ DATA CONTINUOUS

 This function performs just like READ DATA except that the specified location is read repeatedly and

displayed on the screen until the EXIT READ function key is pressed. Up to four data locations may be
selected to be read continuously.

5.4.1.3 READ FLAG

 This function will retrieve the status (ON = 1, OFF = 0) of the desired flag from the MSC. The flag number

may be entered as a number or as a label. See Chapter 8 for further discussion of flags.

5.4.1.4 READ FLAG CONTINUOUS

 This function will continuously read and display the status of a specified MSC flag. Press the EXIT READ

function key to stop this function. Up to four flags may be read continuously.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MPDEBUG

JUNE 1995 Page 27

5.4.1.5 AXIS STATUS

 This function continuously reads the status bits for the desired axis (Controller) and displays appropriate

messages if any of the status bits are set. If no status bits are set, no messages will appear.

5.4.1.6 MACRO STATUS

 This command reads and displays the status information from the MSC System Unit. The screen shows the

name of the currently loaded Macroprogram and the date and time this Macroprogram was compiled. The
lower portion of the screen displays the name and software revision levels for each Controller in the MSC
System unit. A description of any bits set in the Macroprogram Status Word also appears. The MACRO
STATUS function does NOT continuously update the screen.

5.4.2 WRITE FUNCTIONS

 The Write functions provide a means for changing Macroprogram data locations and flags.

5.4.2.1 WRITE DATA

 This function writes data into the MSC data area. MPDEBUG will ask first for a data address. Enter the

desired address symbolically or numerically. MPDEBUG will then ask for a data value. Enter this value as a
single number or an arithmetic expression.

5.4.2.2 WRITE DATA CONTINUOUS

 This function allows continued updating of a particular MSC data location. It functions similarly to WRITE

DATA except that after sending the specified value to the MSC, MPDEBUG will immediately request
another value to be written. Exit the WRITE CONTINUOUS function by pressing the function key labeled
EXIT WRITE.

5.4.2.3 WRITE FLAG

 This function will set or clear the desired flag. The flag number is entered either as a symbol or a number.

To change the state of the specified flag, press the appropriately labeled function key. Alternately, type an S
to set the flag or a C to clear it. If any other character is typed, the status of the flag is not changed.

 NOTE

Writing to an I/O flag assigns that flag as an output
flag and will no longer respond to an external input.

5.4.2.4 WRITE FLAG CONTINUOUS

 This function allows the user to continuously change the state of a selected flag. Exit this function by

pressing EXIT WRITE.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MPDEBUG IB-11C001

Page 28 JUNE 1995

5.4.3 TRACE FUNCTIONS

 The MSC has the ability to "remember" the last 112 instructions that it executed. MPDEBUG can tell the

MSC when to start and stop this "memory" and can read and display the values contained in it. These
TRACE functions are described below.

 The trace functions request two address values in order to know how to perform the trace. The first address

requested is the focal point for the trace. (The prompt message will depend on the trace mode being used.)
 The second address requested is the START TRACE AT address. The MSC will not activate its trace
memory until this address is encountered. Note that simply pressing the Enter key in response to the
prompt address will cause the MSC to begin the trace immediately. This feature can be used as shown in
the following example. Suppose you wish to trace execution of a subroutine labeled check_status, but only
after the instruction labeled run_machine had executed. The proper key sequence would be:

 1. Press the TRACE AFTER function key.

 2. In response to the TRACE AFTER ADDRESS: prompt, enter check_status.

 3. In response to the START TRACE AT (PRESS ENTER TO START IMMEDIATELY) prompt, enter

run_machine.

 This sequence of steps tells the MSC to watch for the execution of the instruction at the label run_machine,

and, after encountering it, to start watching for the instruction labeled check_status. When the
check_status address is encountered, the next 112 instructions will be saved, transmitted to MPDEBUG,
and displayed on the screen.

 Address values are easily entered by using the appropriate Macroprogram statement label. A list of labels is

provided as part of the Macroprogram listing, and can be viewed using the VIEW SYMBOLS or the VIEW
SOURCE function of MPDEBUG. Trace points between statement labels may be referenced by their
numeric address. These addresses can be determined using the VIEW SOURCE function.

5.4.3.1 TRACE BEFORE

 This function allows you to view the Macroprogram instructions that were executed before reaching the

specified label.

5.4.3.2 TRACE ABOUT

 This function will cause the instructions just before and just after the specified label to be traced.

5.4.3.3 TRACE AFTER

This function will trace the Macroprogram instructions executed after reaching the specified label.

5.4.3.4 TRACE CURRENT

This function commands the MSC to trace the next 112 instructions executed. It can be useful if you are not
sure which part of your program is currently being executed.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MPDEBUG

JUNE 1995 Page 29

5.4.3.5 STOP TRACE

 Stop Trace commands the MSC to stop the currently active trace. It would most often be used when the

specified trace does not finish naturally. For example, if you set up a trace after the label set_zero, and the
program never got to the specified label, attempts to READ TRACE would produce only the message
"Trace still running". STOP TRACE would then be used to tell the MSC to stop performing the trace. When
the STOP TRACE function is used, the trace buffer may not contain meaningful information.

5.4.3.6 READ TRACE

 This function reads and displays the results of the last trace executed by the MSC. The trace screen may

be scrolled up and down by using the cursor keys, the PgDn and PgUp keys, and the Home key. If the
trace last specified has not completed, the message "Trace still running" will be displayed.

5.4.4 MSC COMMANDS

 This group of commands deals with transmitting Macroprograms to the MSC, starting program execution,

and setting the MSC into various modes of operation.

5.4.4.1 STOP PROGRAM

 This function causes the currently executing Macroprogram to be stopped. An f_decel command is sent to

each Controller card. NOTE: The STOP PROGRAM function key is available on all MPDEBUG menus.

5.4.4.2 RESET

 This function sends a serial RESET command to the MSC. The RESET will clear all flags, reset all

Controller cards, and erase any Macroprogram and data resident in the MSC. This function must be
preceded by a STOP PROGRAM function.

5.4.4.3 SEND PROGRAM

 This function will transmit the currently loaded Macroprogram to the MSC. A RESET function must be

performed prior to using the SEND PROGRAM function.

5.4.4.4 START PROGRAM

 This function will begin execution of the Macroprogram currently resident in the MSC. This function will not

execute if no program has been sent to the MSC.

5.4.4.5 PROM OPTIONS

 This function provides access to a sub-menu used to copy the Macroprogram currently resident in the MSC

to an EPROM. NOTE: It is possible for the program resident in the MSC to be different from the program
resident in the Toolkit.

 To copy the resident program to EPROM, perform the following steps:

 1. If the resident program is running, press F1, STOP PROGRAM.

 2. The PROGRAM MODE switch on the MSC PROM Pocket must be set to the Program position(the

MSC-850/32 controller does not have a PROGRAM MODE switch).

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MPDEBUG IB-11C001

Page 30 JUNE 1995

 3. Insert the EPROM to be programmed in the PROM Pocket. The EPROM must be an INTEL

D27256-1 UV erasable EPROM, or equivalent.

 4. Press function key F2, BURN PROM. The message

 BURNING PROM.....

 will appear at the top of the screen. Depending on the size of the program being copied to EPROM,

the message may remain on the display for up to 2 or 3 minutes.

 While the EPROM is being programmed, the green LED on the PROM Pocket will be illuminated. When

using the MSC-250 or MSC-850/32 controllers, the status display will indicate that the EPROM is being
programmed.

 On successful completion of the programming operation, the message

 PROM Operation Successful

 will appear. If an error is detected during programming, refer to Table 15.1 for an explanation of the error

code.

5.4.4.6 TEST MODE

 This function places each axis in the MSC System Unit into the test mode. Refer to the MSC System

Manual Test Procedure section.

5.4.4.7 SET AUTOSTART

 This function sets the AUTOSTART bit in the MSC status word and, if necessary, begins execution of the

Macroprogram residing in MSC non-volatile memory. The MSC operating system firmware tests the
AUTOSTART bit on power-up. If it is turned on, the Macroprogram currently stored in non-volatile memory
will be executed.

5.4.5 VIEW FUNCTIONS

 The view functions provide a means of displaying various pertinent files on the screen during the editing

process. You may move from place to place in the file being displayed using the PgDn and PgUp keys.

5.4.5.1 SOURCE

 This function displays the source program file (created by MPEDIT) for the program currently being

debugged. Program addresses are displayed for each instruction in the program. This is a convenient way
to determine an address value to use with trace functions.

5.4.5.2 EQUATE TABLE

 This function displays all constants defined using the equ compiler directive.

5.4.5.3 LABEL TABLE

 This function displays all program labels and their corresponding addresses.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MPDEBUG

JUNE 1995 Page 31

5.4.5.4 CONSTANTS

 This function displays the constants defined in the Macroprogram along with their data addresses.

5.4.5.5 DATA TABLE

 This function displays all data locations defined using compiler directives such as begin_data, dim, or

integer. The format for this display shows the variable name, its decimal address, and its hexadecimal
address.

5.4.5.6 LAST TRACE

 This function displays the information from the last trace executed by the MSC. If no tracing has been done,

an appropriate message is displayed.

5.4.6 BLOCK FUNCTIONS

 Block commands are used to read and write data areas. They are helpful when a large amount of

continuous data has to be modified or viewed.

 When the BLOCK function key is pressed, the system responds by showing three additional function keys;

STOP PROGRAM, READ DATA, and WRITE DATA.

5.4.6.1 READ DATA

 This function key allows you to select the beginning of a data area to be viewed. The data address is

entered and the system will display the current contents of each of a series of data locations. By pressing
the PgDn key, you can view the next group of continuous data locations. To exit BLOCK READ, press the
EXIT BLK READ function key.

5.4.6.2 WRITE DATA

 This function key allows you to select the beginning of a data area to be viewed and, optionally, modified.

The desired data address is entered and the system displays the Macroprogram data area beginning with
the selected data address. To modify a data value, use the cursor keys to move the highlight to the desired
variable. Type the new value and press the enter key. To change between decimal and hexadecimal
format, press the appropriate function key. To exit BLOCK WRITE, press the EXIT BLK WRITE function
key.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INTRODUCTION TO MACROPROGRAMMING LANGUAGE IB-11C001

Page 32 JUNE 1995

6.0 INTRODUCTION TO MACROPROGRAMMING
LANGUAGE

6.1 BASIC CONCEPTS

 A Macroprogram is an organized group of instructions that can be executed by an MSC system unit.

Macroprograms reside in a non-volatile memory in the system unit.

 In the MSC-850/32, there are 64,000 bytes allocated for the program area and an additional 64,000 bytes

allocated for the data area.

 In the MSC-250, 32,000 bytes of storage are available for the combined program and data areas.

 In an MSC-800 and MSC-850, 16,000 bytes of storage are available for the combined program and data

areas. This memory space is dynamically allocated as the program is compiled. The size of each area may
vary, so long as the sum of the program and data areas do not exceed 16,000 bytes.

6.2 INSTRUCTION FORMAT

 Macroprogram instructions are, in many ways, similar to the instructions of the BASIC computer language.

Each instruction consists of a statement label, an operation, a list of parameters, and an optional comment.
This basic format is illustrated in Figure 6.1.

 Figure 6.1 - MACROPROGRAM INSTRUCTION FORMAT

 label instruction parameter list comment

 The label portion of the instruction is not always required, depending on the type of instruction used. It is

required for instructions which define variables, text strings, arrays, or equated values.

 The parameter list part of an instruction line is also not always required. However, there are usually one or

more parameters for an instruction. In the example in Figure 6.2, two parameters are required.

 Figure 6.2 - INSTRUCTION WITH TWO PARAMETERS

 label set_speed axis_1,300 comment

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INTRODUCTION TO MACROPROGRAMMING LANGUAGE

JUNE 1995 Page 33

6.3 COMMENTS

 Comments provide a means for a programmer to describe the functions being performed by a particular

instruction or group of instructions. It is important to note that comments do not use any of the storage within
the Macroprogram memory space. The liberal use of comments is highly recommended. There are two
ways to implement comments within a Macroprogram:

 1. An entire line of text can be dedicated as a comment line by placing an exclamation point in

the first character position of the line.

 2. Comments can be placed at the end of an instruction line by leaving at least one space

between the last parameter in the instruction and the beginning of the comment.

 Comments of both formats are included in the sample Macroprogram shown in Figure 6.3.

6.4 BLANK LINES

 Blank lines may be entered in the Macroprogram to make the program more readable. For example, a

subroutine might be separated from the main body of the Macroprogram by one or more blank lines. As with
comments, blank lines do not use any storage within the Macroprogram.

6.5 LABEL LINES

 Program lines containing only a label are allowed. It is often handy to place a line containing only a label just

ahead of an instruction it references. In this way, it is easier to insert new instructions in the program if
necessary during the testing process. Lines containing only a label use no storage within the
Macroprogram.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INTRODUCTION TO MACROPROGRAMMING LANGUAGE IB-11C001

Page 34 JUNE 1995

 Figure 6.3 - SAMPLE MACROPROGRAM

LABEL OPERATION PARAMETERS COMMENT

 msc_type 850
 declare ON

pos_1 equ 81920 two turns CW
pos_2 equ -81920 two turns CCW
rack equ 1 use axis 1
rack_down equ 93 down flag
rack_busy equ 94 busy flag
fault_lite equ 0 I/O zero

! do initialization functions

 turn_off fault_lite show no fault

 drive_on rack enable drive
 set_speed rack,50 500 rpm speed
 set_ac_dc rack,20 rev/sec/sec

! set a local zero at current position

 set_local rack

! begin main program loop

restart
 position rack,pos_1 go 2 turns CW
loop1
 if_stat_on rack_down,fault check error
 if_stat_on rack_busy,loop1 wait for done

 position rack,pos_2 go 2 turns CCW

loop2
 if_stat_on rack_down,fault check error
 if_stat_on rack_busy,loop2 wait for done

 goto restart do it all again

fault
 turn_on fault_lite signal error
 sys_return

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 COMPILER DIRECTIVES

JUNE 1995 Page 35

 7.0 COMPILER DIRECTIVES

7.1 DESCRIPTION

 Compiler directives are a class of instructions which simplify such operations as defining constants, data

arrays and cams, or which cause the MPCPL program to function in a particular way. These instructions
have no direct effect on the MSC controller. Their purpose is to simplify the programmer's task.

 A list of compiler directive instructions and their formats is shown in Table 7.1.

 Table 7.1 - COMPILER DIRECTIVES

Instruction Format Ref. Page

begin_cam label begin_cam 116
begin_data label begin_data 117
cam cam value,value,etc. 122
data data value,value,etc. 134
declare declare mode 135
dim label dim controller#,size 138
end_cam end_cam 146
end_data end_data 147
equ label equ value 149
integer label integer 203
msc_type msc_type system_type 217
text label text "ASCII string" 291

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
FLAGS IB-11C001

Page 36 JUNE 1995

 8.0 FLAGS

8.1 DESCRIPTION

 A flag is a bit in memory representing the current state of a timer, axis status, I/O or other condition. The

MSC has reserved a storage area in memory for 256 flags. A flag can be either on (1) or off (0).

 There are a number of Macroprogram instructions dealing with flags. In fact, taken as a group, flag

instructions comprise the largest subset of macroprogram instructions.

 There are flag instructions to read inputs, to turn outputs on and off, to start and stop timers, to read motor

activity and fault conditions and to read, set and clear user program switches.

 Tables 8.1 through 8.9 list the flags available in the MSC family of controllers.

 NOTE:

The following are special considerations when using the MSC-250:

1) The MSC-250 controller can use only two (2) I/O Expander

units and therefore does not use I/O flags 48 - 63.

 Flags 64 - 71 are used as software PLS flags.

2) The motor status flags 128 - 175 are reserved for extended

status indicators for axes 1 - 3 respectively on the MSC-250.

3) The motor status flags 176 - 207 are not used in the MSC-

250. These cannot be used as additional user flags.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 FLAGS

JUNE 1995 Page 37

FLAG # FUNCTION CATEGORY

0 - 7
8 - 23
24 - 39
40 - 55
56 - 71

ON BOARD I/O, PERMANENTLY ASSIGNED
I/O EXPANDER ADDRESS CODE "A"
I/O EXPANDER ADDRESS CODE "B"
I/O EXPANDER ADDRESS CODE "C"
I/O EXPANDER ADDRESS CODE "D"

INPUT/
OUTPUT

72 - 79 PROGRAMMABLE TIMERS TIMER

80 - 95
96 - 111
112 - 127
128 - 143
144 - 159
160 - 175
176 - 191
192 - 207

CONTROLLER #1 STATUS FLAGS
CONTROLLER #2 STATUS FLAGS
CONTROLLER #3 STATUS FLAGS
CONTROLLER #4 STATUS FLAGS
CONTROLLER #5 STATUS FLAGS
CONTROLLER #6 STATUS FLAGS
CONTROLLER #7 STATUS FLAGS
CONTROLLER #8 STATUS FLAGS

CONTROLLER
STATUS

208 - 255 GENERAL PURPOSE USER FLAGS USER

 Table 8.1 - MSC-800, MSC-850, MSC-850/32 INTERNAL STATUS FLAGS

FLAG # FUNCTION CATEGORY

0 - 15
16 - 31
32 - 47
48 - 63
64 - 71

ON BOARD I/O, PERMANENTLY ASSIGNED
I/O EXPANDER ADDRESS CODE "A"
I/O EXPANDER ADDRESS CODE "B"
NOT USED
SOFTWARE PLS FLAGS

INPUT/
OUTPUT

72 - 79 PROGRAMMABLE TIMERS TIMER

80 - 95
96 - 111
112 - 127
128 - 143
144 - 159
160 - 175
176 - 191
192 - 207

CONTROLLER #1 STATUS FLAGS
CONTROLLER #2 STATUS FLAGS
CONTROLLER #3 STATUS FLAGS
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED

CONTROLLER
STATUS

208 - 255 GENERAL PURPOSE USER FLAGS USER

 Table 8.2 - MSC-250 INTERNAL STATUS FLAGS

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
FLAGS IB-11C001

Page 38 JUNE 1995

#1 #2 #3 #4 #5 #6 #7 #8 MEANING

80 96 112 128 144 160 176 192 MDU FAIL

81 97 113 129 145 161 177 193 LOCK PENDING

82 98 114 130 146 162 178 194 FOLLOWING ERROR

83 99 115 131 147 163 179 195 MASTER/TEST MODE

84 100 116 132 148 164 180 196 CAM/PW PROFILE SIZE EXCEEDED

85 101 117 133 149 165 181 197 COMMAND INVALID IN THIS STATE

86 102 118 134 150 166 182 198 LOSS OF RESOLVER

87 103 119 135 151 167 183 199 AXIS TIME-OUT

88 104 120 136 152 168 184 200 MOTOR JOGGING

89 105 121 137 153 169 185 201 MOTOR INDEXING

90 106 122 138 154 170 186 202 CALCULATING

91 107 123 139 155 171 187 203 HWI ARMED

92 108 124 140 156 172 188 204 FORCE DECEL IN PROGRESS

93 109 125 141 157 173 189 205 AXIS DOWN

94 110 126 142 158 174 190 206 AXIS BUSY

95 111 127 143 159 175 191 207 MASTER/SLAVE LOCK

 Table 8.3 - ACR-850 CONTROLLER STATUS FLAGS

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 FLAGS

JUNE 1995 Page 39

#1 #2 #3 #4 #5 #6 #7 #8 MEANING

80 96 112 128 144 160 176 192 MDU FAIL

81 97 113 129 145 161 177 193 LOCK PENDING

82 98 114 130 146 162 178 194 FOLLOWING ERROR

83 99 115 131 147 163 179 195 MASTER/TEST MODE

84 100 116 132 148 164 180 196 CAM/PW PROFILE SIZE EXCEEDED

85 101 117 133 149 165 181 197 COMMAND INVALID IN THIS STATE

86 102 118 134 150 166 182 198 MARKER OUT OF LIMIT

87 103 119 135 151 167 183 199 AXIS TIME-OUT

88 104 120 136 152 168 184 200 MOTOR JOGGING

89 105 121 137 153 169 185 201 MOTOR INDEXING

90 106 122 138 154 170 186 202 CALCULATING

91 107 123 139 155 171 187 203 HWI ARMED

92 108 124 140 156 172 188 204 FORCE DECEL IN PROGRESS

93 109 125 141 157 173 189 205 AXIS DOWN

94 110 126 142 158 174 190 206 AXIS BUSY

95 111 127 143 159 175 191 207 MASTER/SLAVE LOCK

 Table 8.4 - ACE-850 CONTROLLER STATUS FLAGS

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
FLAGS IB-11C001

Page 40 JUNE 1995

#1 #2 #3 #4 #5 #6 #7 #8 MEANING

80 96 112 128 144 160 176 192 MDU FAIL

81 97 113 129 145 161 177 193 PLS FLAG 16

82 98 114 130 146 162 178 194 NOT USED

83 99 115 131 147 163 179 195 PLS FLAG 17

84 100 116 132 148 164 180 196 PLS FLAG 19

85 101 117 133 149 165 181 197 COMMAND INVALID IN THIS STATE

86 102 118 134 150 166 182 198 PLS FLAG 18

87 103 119 135 151 167 183 199 AXIS TIME-OUT

88 104 120 136 152 168 184 200 MOTOR JOGGING

89 105 121 137 153 169 185 201 MOTOR INDEXING

90 106 122 138 154 170 186 202 CALCULATING

91 107 123 139 155 171 187 203 NOT USED

92 108 124 140 156 172 188 204 FORCE DECEL IN PROGRESS

93 109 125 141 157 173 189 205 AXIS DOWN

94 110 126 142 158 174 190 206 AXIS BUSY

95 111 127 143 159 175 191 207 MASTER/SLAVE LOCK

 Table 8.5 - MCF-850 CONTROLLER STATUS FLAGS

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 FLAGS

JUNE 1995 Page 41

#1 #2 #3 #4 #5 #6 #7 #8 MEANING

80 96 112 128 144 160 176 192 MDU FAIL

81 97 113 129 145 161 177 193 PLS FLAG 16

82 98 114 130 146 162 178 194 NOT USED

83 99 115 131 147 163 179 195 PLS FLAG 17

84 100 116 132 148 164 180 196 PLS FLAG 19

85 101 117 133 149 165 181 197 COMMAND INVALID IN THIS STATE

86 102 118 134 150 166 182 198 PLS FLAG 18

87 103 119 135 151 167 183 199 AXIS TIME-OUT

88 104 120 136 152 168 184 200 NOT USED

89 105 121 137 153 169 185 201 NOT USED

90 106 122 138 154 170 186 202 CALCULATING PLS DATA

91 107 123 139 155 171 187 203 NOT USED

92 108 124 140 156 172 188 204 NOT USED

93 109 125 141 157 173 189 205 AXIS DOWN

94 110 126 142 158 174 190 206 NOT USED

95 111 127 143 159 175 191 207 NOT USED

 Table 8.6 - HPL-850 CONTROLLER STATUS FLAGS

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
FLAGS IB-11C001

Page 42 JUNE 1995

#1 #2 #3 #4 #5 #6 #7 #8 MEANING

80 96 112 128 144 160 176 192 NOT USED

81 97 113 129 145 161 177 193 NOT USED

82 98 114 130 146 162 178 194 NOT USED

83 99 115 131 147 163 179 195 MASTER TEST MODE

84 100 116 132 148 164 180 196 NOT USED

85 101 117 133 149 165 181 197 COMMAND INVALID IN THIS STATE

86 102 118 134 150 166 182 198 NOT USED

87 103 119 135 151 167 183 199 AXIS TIME-OUT

88 104 120 136 152 168 184 200 NOT USED

89 105 121 137 153 169 185 201 NOT USED

90 106 122 138 154 170 186 202 NOT USED

91 107 123 139 155 171 187 203 NOT USED

92 108 124 140 156 172 188 204 NOT USED

93 109 125 141 157 173 189 205 AXIS DOWN

94 110 126 142 158 174 190 206 NOT USED

95 111 127 143 159 175 191 207 NOT USED

 Table 8.7 - ACM-850 CONTROLLER STATUS FLAGS

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 FLAGS

JUNE 1995 Page 43

#1 #2 MEANING

80 96 NOT USED

81 97 LOCK PENDING

82 98 FOLLOWING ERROR

83 99 MASTER/TEST MODE

84 100 CAM/PW PROFILE

85 101 COMMAND INVALID IN THIS STATE

86 102 NOT USED

87 103 NOT USED

88 104 MOTOR JOGGING

89 105 MOTOR INDEXING

90 106 CALCULATING

91 107 HWI ARMED

92 108 FORCE DECEL IN PROGRESS

93 109 AXIS DOWN

94 110 AXIS BUSY

95 111 MASTER/SLAVE LOCK

Table 8.8 - MSC-250 CONTROLLER STATUS FLAGS AXES 1 & 2

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
FLAGS IB-11C001

Page 44 JUNE 1995

#3 MEANING

112 NOT USED

113 NOT USED

114 NOT USED

115 NOT USED

116 CAM/PW PROFILE SIZE EXCEEDED

117 COMMAND INVALID IN THIS STATE

118 NOT USED

119 NOT USED

120 MOTOR JOGGING

121 MOTOR INDEXING

122 CALCULATING

123 NOT USED

124 FORCE DECEL IN PROGRESS

125 NOT USED

126 AXIS BUSY

127 NOT USED

Table 8.9 - MSC-250 PSEUDO CONTROLLER STATUS FLAGS

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
FLAGS IB-11C001

Page 46 JUNE 1995

CAM SIZE
EXCEEDED/
PIECEWISE
PROFILE ARRAY
FULL

This flag will be set if the number of cam array data elements exceeds 28K
bytes, or if the number of piecewise profile segments exceeds 99.

COMMAND
INVALID IN THIS
STATE

This flag will be set whenever the axis is requested to execute a command that
it is not capable of at that moment. This typically occurs when program steps
are out of logical order. An example would be the situation where the axis is
currently jogging and is then commanded to index without first completing a
f_decel instruction and waiting for the motor to stop.

MARKER OUT OF
LIMIT

This flag, specific to the MSC-850/ACE-850 and MSC-250 axis controllers,
indicates that the controller observed a marker pulse from the encoder that
was more than +/- 5 bits from the expected position, and that the marker
correction function has been suspended. The flag will be cleared if the marker
pulse is subsequently observed within the +/- 5 bit window.

LOSS OF
RESOLVER

This flag, specific to the ACR-850C (SFO-8060) axis controller card, indicates
that the resolver convertor has lost one or more of the required signals for
conversion or the convertor has lost its ability to track the angle do to speeds in
excess of 7200 RPM.

AXIS TIMEOUT On system power up each controller card slot in an MSC controller is checked

for the existence of a functional Controller card. This flag will be set for each
axis that does not have a functional card installed or for those slots
experiencing communications problems. This flag is not used in the MSC-250.

MOTOR JOGGING This flag will be set when a jog_cw, jog_ccw, track_spd, l_track_spd,
vel_cw or vel_ccw command is executed. This flag will be cleared after
completing a f_decel operation.

MOTOR INDEXING This flag will be set when a index or position command is executed. This flag
will be cleared after completing the selected move.

CALCULATING
PIECEWISE
PROFILE

This flag will be set while a Piecewise profile is being calculated. It will be
cleared otherwise.

CALCULATING
PLS DATA

This flag will be set while Programmable Limit Switch data is being calculated.

HWI ARMED

The controller has received a hardware interrupt instruction and is monitoring
its respective hardware interrupt input line.

FORCED DECEL IN
PROGRESS

This flag will be set when an f_decel or unlock command is executed and the
axis is still in motion.

AXIS DOWN This flag will be set if a following error or axis timeout is encountered (following

errors and axis timeouts are described above).

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 FLAGS

JUNE 1995 Page 47

AXIS BUSY This flag will be set when the axis is busy performing a motion related
operation such as jog_cw, jog_ccw, index, position, vel_cw, vel_ccw,
track_spd, l_track_spd, or exec_profile. If an axis card experiences an
AXIS DOWN condition while the AXIS BUSY flag is set, AXIS BUSY will
remain set.

MASTER/SLAVE
LOCK

This flag will be set when a lock command is executed. It will be cleared when
a f_decel, unlock, or enable command is executed.

BUSY
PROCESSING

This flag is set when the axis processor is executing a lengthy command to
prevent the main processor from sending another Macroprogram instruction for
the specified axis controller. The following Macroprogram Instructions cause
this flag to be set: calc_cam_sum, calc_unit_cam, drive_on, drive_off,
find_mrk_ccw, find_mrk_cw, over_draw, prep_profile, and test_mode.

8.2 TIMERS

 The MSC controllers provide 8 user programmable timers. These timers have a resolution of 10

milliseconds per "tick". Timers are used by first setting the timer to the desired number of counts or ticks.
This causes the flag associated with the timer to turn on and to remain on until the specified time has
passed.

 User timers are decremented on every other tick of the system's 5 millisecond clock. As a result of this,

these timers should be considered accurate to +/- 10 milliseconds.

8.3 FLAG INSTRUCTIONS

 Instructions for operating on and testing flags are summarized in Table 8.10.

 Table 8.10 - FLAG INSTRUCTIONS

Instruction Format Ref. Page

blk_io_in label blk_io_in input flag#,variable 118
blk_io_out label blk_io_out output flag#,variable 119
clr_flag label clr_flag user flag# 129
get_status label get_status controller# 179
if_flag_off label if_flag_off user_flag#,address_label 190
if_flag_on label if_flag_on user_flag#,address_label 191
if_io_off label if_io_off I/O flag#,address_label 192
if_io_on label if_io_on I/O flag#,address_label 193
if_stat_off label if_stat_off status_flag#,address_label 195
if_stat_on label if_stat_on status_flag#,address_label 196
if_tmr_off label if_tmr_off timer_flag#,address_label 197
if_tmr_on label if_tmr_on timer_flag#,address_label 198
set_flag label set_flag user_flag 244
set_tmr label set_tmr timer_flag#,ticks 278
turn_off label turn_off I/O flag# 294
turn_on label turn_on I/O flag# 295

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
ARITHMETIC FUNCTIONS IB-11C001

Page 48 JUNE 1995

 9.0 ARITHMETIC INSTRUCTIONS

9.1 OVERVIEW

 The Macroprogramming language provides several types of arithmetic functions, including:

 1. 32 bit integer arithmetic
 2. Array manipulation
 3. Byte operations
 4. Bit set and bit clear operations
 5. Built in arithmetic functions

 Each of these items will be explained in more detail below.

9.2 INTEGER ARITHMETIC

 Variables in a Macroprogram normally occupy 32 bits (4 bytes) of storage. Arithmetic statements in

Macroprogramming language operate on these 4 byte variables. The format for arithmetic instructions is
similar to that of the BASIC language LET statement:

 let res=var1 op var2

 where res is the result of the operation, var1 and var2 are the variables to be operated on, and op is the

operation to be performed. Note that multiple operations in a single let statement are NOT allowed. For
example,

 let a=b+c

 is acceptable, but

 let a=b+c/d

 is not. Calculations requiring multiple operations must be performed in multiple let statements.

 Spaces between variable names and operators should not be used.

9.3 ARRAY MANIPULATION

 A data array is a group of 32 bit variables which can be referenced by the same variable name. Data arrays

are usually defined using a dim instruction or by use of the begin_data, data, and end_data instructions.
See Chapter 18 for an explanation of these instructions.

 For example, to set aside ten 32 bit storage locations to contain a table of positions, the instruction

 positions dim 10

 could be used. Within the Macroprogram, the first position in the table would be referred to as positions[0].

 The value within brackets is known as the array subscript. Note that for a table of ten values, the array
subscript ranges from zero to nine. Array subscripts can be a constant, an expression, or a variable.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACRORPROGRAM DEVELOPMENT SYSTEM
IB-11C001 ARITHMETIC FUNCTIONS

JUNE 1995 Page 49

Special forms of the let instruction serve to store information in and retrieve information from data arrays. In
our position table example, the instruction

 let p=position[3]

 would retrieve the fourth position from the array and store that value in the variable p. To store a value in a

data array, the instruction

 let position[3]=x

 would be used.

 To use a value from an array in arithmetic instructions, it is necessary to retrieve the value into a non-array

variable, perform the arithmetic operation, and then store the result back in the array.

9.4 BYTE OPERATIONS

 Macroprogramming Language provides a special instruction for the manipulation of byte oriented data such

as electronic cams (see Chapter 14) or strings of characters. This special instruction, the let_byte, is similar
to the special case of the let statement for handling data arrays. For example, to access the fourth
character of the text string f_name, the instruction

 let_byte a=f_name[3]

 could be used. To store data into a byte oriented data array, the instruction format

 let_byte f_name[3]=a

 would be used.

 The let_byte instruction does not support any arithmetic operations. To perform arithmetic on byte oriented

data, it is necessary to retrieve the byte into a conventional variable, perform the arithmetic, and store the
result back into the byte array. Note: The let_byte instruction treats byte information as unsigned.

9.5 BIT ORIENTED OPERATIONS

 Macroprogramming Language provides instructions for setting (turning on) and clearing (turning off)

individual bits within a 32 bit data value. These instructions can be useful when setting up variables for use
with the set_map and set_mcf instructions and for programmable limit switches. A complementary set of
bit testing instructions (see Chapter 18) allow program branching to take place depending on the state of a
single bit in a 32 bit data value.

9.6 BUILT IN ARITHMETIC FUNCTIONS

 Macroprogramming Language supports certain built in arithmetic functions for commonly required

calculations. These functions are listed in Table 9.1. The format for usage of these functions is

 let ans=fn(x)

 where fn represents the function name.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
ARITHMETIC FUNCTIONS IB-11C001

Page 50 JUNE 1995

 Table 9.1 - BUILT IN ARITHMETIC FUNCTIONS

Function Description

 abs(x) Returns the absolute value of x.

 sqr(x) Returns the square root of x. Note: If x is negative or zero, zero is returned.

 neg(x) Returns the two's complement of x.

9.7 ARITHMETIC INSTRUCTION SUMMARY

 Arithmetic instructions are summarized in table 9.2.

 Table 9.2 - ARITHMETIC INSTRUCTIONS

Instruction Format Ref. Page

clr_bit label clr_bit bit#,variable 128
let_byte label let_byte destination=source 209
let label let variable=op1 operation op1 207, 208
set_bit label set_bit bit#,variable 242

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 PROGRAM FLOW CONTROL

JUNE 1995 Page 51

 10.0 PROGRAM FLOW INSTRUCTIONS

10.1 DESCRIPTION

 Normally, Macroprogram instructions execute in an orderly, sequential fashion. Sometimes, it is desirable to

alter this sequential order based on the status of an I/O module, the result of a calculation, the detection of a
motor fault, or some other condition. Program flow instructions provide this capability.

 Macroprogramming Language provides three general classes of program flow instructions - branching,

subroutine control, and the select statement. A special type of program flow instruction based on interrupts
is described separately in Chapter 12.

10.2 BRANCHING INSTRUCTIONS

 Macroprogramming Language provides two types of branching instructions - unconditional and conditional.

The goto and restart_at instructions are the only unconditional branch instructions other than subroutine
control instructions, which are covered separately.

 Conditional branching instructions can be described verbally as follows:

 1. Test the specified condition.
 2. If the specified condition is true, transfer program control to the specified address.
 3. If the specified condition is false, continue by executing the next sequential instruction.

 Conditional instructions can test the status of MSC flags, the result of an arithmetic comparison, the status of

bits in a variable, or whether characters are present at a serial port.

10.3 SUBROUTINE CONTROL

 When designing a Macroprogram, it is often desirable to place a group of commonly used instructions into a

unit called a subroutine. The subroutine can then be called from anywhere within the Macroprogram.
Subroutines must begin with a labeled statement. The label on this initial statement is often referred to as
the subroutine name. Subroutines must end with a return_sub instruction.

 The gosub instruction may then be used to transfer program control to the subroutine. The subroutine

instructions are then executed until the return_sub instruction is encountered. At that point, program control
returns to the instruction immediately following the gosub instruction.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
PROGRAM FLOW CONTROL IB-11C001

Page 52 JUNE 1995

10.4 THE SELECT STATEMENT

 Often, the process of controlling program flow is more complex than testing a flag and branching if the flag is

set. For example, it may be necessary to choose among several alternatives based on a user entered menu
selection. In cases like these, the select instruction group provides an effective means of controlling
program flow.

 A sample select group is shown in Figure 10.1.

 select keynum
 case 1
 .
 (statements to do when keynum = 1)
 .
 exit_select

 case 2
 .
 (statements to do when keynum = 2)
 .
 exit_select

 default
 .
 (statements to do when keynum does not match a case option)
 .
 exit_select
 end_select

 Figure 10.1 - TYPICAL SELECT STATEMENT GROUP

 A Macroprogram may contain up to 30 select statement groups. Each group may contain up to 100 case

instructions.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 PROGRAM FLOW CONTROL

JUNE 1995 Page 53

10.5 PROGRAM FLOW INSTRUCTION SUMMARY

 Program flow instructions are summarized in Table 10.1.

 Table 10.1 - PROGRAM FLOW INSTRUCTIONS

Instruction Format Ref. Page

case label case num 125
default label default 136
end_select label end_select 148
exit_select label exit_select 151
gosub label gosub subroutine label 184
goto label goto address_label 185
if label if var1 op var2,address_label 186
if_bit_clr label if_bit_clr bit#,variable,address_label 187
if_bit_set label if_bit_set bit#,variable,address_label 188
if_char label if_char port#,address_label 189
if_flag_off label if_flag_off user_flag#,address_label 190
if_flag_on label if_flag_on user_flag#,address_label 191
if_io_off label if_io_off I/O flag#,address_label 192
if_io_on label if_io_on I/O flag#,address_label 193
if_no_char label if_no_char port#,address_label 194
if_stat_off label if_stat_off status_flag#,address_label 195
if_stat_on label if_stat_on status_flag#,address_label 196
if_tmr_off label if_tmr_off timer_flag#,address_label 197
if_tmr_on label if_tmr_on timer_flag#,address_label 198
restart_at label restart_at address_label 236
return_sub label return_sub 237
select label select variable 239

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MOTION INSTRUCTION IB-11C001

Page 54 JUNE 1995

 11.0 MOTION INSTRUCTIONS

11.1 OVERVIEW

 Motion instructions are divided into five classes:

 1. Pre-motion Preparation

 2. Velocity Control

 3. Incremental and Absolute Positioning

 4. Piecewise Profiles

 5. Master/Slave Operations

 Master/Slave operations are covered separately in Chapter 13. The remaining classes of motion

instructions are covered here.

11.2 MSC CONVENTIONS AND MOTION TERMINOLOGY

11.2.1 POSITION DATA

 MSC-850 and MSC-850/32 Controllers maintain position data as a signed 24 bit number. The least

significant 12 bits of this number represent the position of the feedback transducer. The most significant 12
bits are used as a signed turns counter. The range of valid positions is from -2048 to +2047 turns.

 MSC-250 controllers maintain position data as a 32 bit number. The least significant 12 bits of this number

represent the position of the feedback transducer. The most significant 20 bits are used as a signed turns
counter. The range of valid positions is from -524,287 to +524,287 turns. Positive positions represent a
displacement from zero in the clockwise direction.

 Incremental distances are expressed in a manner similar to position data. For example, an incremental

distance of two turns would be expressed as 8192 (2*4096). Positive distances represent clockwise motion.

11.2.2 SPEED (VELOCITY) DATA

 MSC controllers process speed data in RPM. Speeds may range from 0 to 3600 RPM (7200 RPM if using

an MSC-250) in whole number increments. In special cases, speed values can be scaled down by a factor
of 256 to provide fractional speed control.

11.2.3 ACCELERATION DATA

 Acceleration (accel/decel) data is expressed in revolutions/second2. Accelerations may range from 2 to 800

revolutions/second2 (1600 revolutions/second2 if using an MSC-250). In special cases, acceleration values
can be scaled down by a factor of 256 to provide very slow acceleration rates.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MOTION INSTRUCTIONS

JUNE 1995 Page 55

11.2.4 GLOBAL AND LOCAL ZEROES

 MSC controllers can maintain both a global and a local zero. Global zero usually refers to a fixed machine

home position, and is often established by moving a load until it contacts a sensor. Local zero can be
thought of as a floating home position. Local zero is often used when moving a known distance from the
global zero, setting the local zero, and then performing a series of motions relative to the new zero position.
The local zero may then be cleared.

11.3 MOTION PREPARATION INSTRUCTIONS

 Motion preparation instructions are used to condition a controller prior to executing any motion. They are

used to turn on the drive (amplifier), to set speeds and acceleration rates, and to set and clear zero
positions.

 At power up, the ACR-850 controller sets its turns counter to zero. The low order 12 bits of its position will

reflect the current resolver reading. The default settings for speed, acceleration, and digital compensation
are activated.

 At power up, ACE-850 controllers and MSC-250 axis controllers also set theirs turns counters to zero. The

low order 12 bits of its position are also set to zero. For an ACE-850, absolute position of the feedback
transducer is not known until the controller is instructed to find the encoder marker pulse.

 Table 11.1 lists motion preparation instructions.

 Table 11.1 - MOTION PREPARATION INSTRUCTIONS

Instruction Format Ref. Page

clr_local label clr_local controller# 131
digi_comp label digi_comp controller#,gain,integral,damp 137
drive_off label drive_off controller# 141
drive_on label drive_onc ontroller# 142
f_decel label f_decel controller# 152
find_mrk_ccw label find_mrk_ccw controller#,counts 153
find_mrk_cw label find_mrk_cw controller#,counts 154
find_tm_ccw label find_tm_ccw controller#,counts 155
find_tm_cw label find_tm_cw controller#,counts 156
master label master controller# 142, 216
set_ac_dc label set_ac_dc controller#,rate 240
set_acy_cnt label set_acy_cnt controller#,count 241
set_home label set_home controller#,offset 250
set_gl_ccw label set_gl_ccw controller# 245, 246
set_gl_cw label set_gl_cw controller# 247, 248
set_local label set_local controller# 252
set_speed label set_speed controller#,speed 251, 276
set_vgain label set_vgain controller#,vel_gain 281

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MOTION INSTRUCTIONS

JUNE 1995 Page 57

11.3.1.1 THE P TERM (PROPORTIONAL GAIN)

 At power up the controller is configured as a proportional gain controller. The default gain value of 16

provides an overall system gain of 1 which will produce a POS OUT signal of 20 volts per revolution of the
encoder shaft. This relationship can be varied by changing the P term;

 P = 256 will produce a POS OUT signal of 20 volts per 1/16 revolution of the encoder shaft.

 P = 1 will produce a POS OUT signal of 20 volts per 16 turns of the encoder shaft.

 This relationship can be used to increase/decrease the servo systems' response and stiffness.

11.3.1.2 THE I TERM (INTEGRAL)

 The integral term is introduced into a servo control system when the proportional gain cannot compensate

for steady-state errors. The actual amount of integral to be added is system dependant; the valid range is
+/- 127. At power-up, the integral term is 0.

 The I term introduces an anticipated error. During steady-state operation, it reduces the position error,

providing more accurate position tracking. During acceleration/deceleration ramps, it can increase system
responsiveness by tending to overshoot the commanded value.

11.3.1.3 THE D TERM (DIFFERENTIAL)

 The differential term is introduced into a servo control system to control the rate of change of the error signal.

 The D term has the effect of rounding the acceleration/deceleration ramps, reducing overshoot of the
commanded value. The actual amount of D to be added is system dependant; the valid range is +/- 127. At
power-up, the differential term is 0.

 The D term benefits the system by reducing overshoot and providing more stability and better response by

damping oscillations. Because the D term suppresses oscillations, the proportional gain term can be
increased to provide a more responsive system.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MOTION INSTRUCTION IB-11C001

Page 58 JUNE 1995

11.3.2 VELOCITY GAIN

 The set_vgain command sets the velocity feed forward gain for the specified axis. During calculation of the

position output value for the specified axis, the velocity feed forward gain term is multiplied by the current
commanded velocity. The resultant value is added to the other digital compensation terms for that axis.

 An approximate starting value for the velocity gain term may be calculated as follows:

 K * 402,650

 Vg = --------------------
 BPR

 where K is the velocity scale factor for the motor/drive system, in volts per 100 RPM, and BPR is the number

of transducer bits per revolution, after quadrature, of the motor shaft. For example, BPR would be 4096 for
a 1024 line encoder.

11.4 VELOCITY CONTROL INSTRUCTIONS

 Velocity control instructions are used in applications where control of motor speed is the objective. Velocity

control instructions are listed in Table 11.2.

 MSC controllers provide several different types of velocity control instructions. Choice of instruction is

usually determined by the requirements of the application. Each of the different types is described below.

 1. Jog instructions cause the controller to run its motor at a constant velocity until commanded to stop.

 Direction of rotation is determined by the instruction -- jog_cw or jog_ccw. Velocity may not be
changed while the motor shaft is moving.

 2. Track speed instructions allow on-the-fly speed changes. Unlike jog instructions, direction of

rotation is determined by the sign of the speed variable, with positive values indicating clockwise
rotation. Two forms of the track speed instruction are provided. The track_spd instruction covers
speeds in the range of -3600 to 3600 RPM with a resolution of 1 RPM. The l_track_spd instruction
covers speeds from -128 to +127.99 RPM in increments of 1/256 RPM.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MOTION INSTRUCTIONS

JUNE 1995 Page 59

3. Velocity instructions provide speed control with very low acceleration rates. Like the jog
instructions, direction of rotation is determined by the instruction syntax. When a controller receives
a vel_cw or vel_ccw command, it divides its present acceleration rate by 256 before using it.
Speed, but not direction, may be changed while in velocity mode by issuing another velocity
instruction with the new speed.

 4. To stop a motor shaft, the f_decel instruction is used. This instruction causes the motor to

decelerate to zero speed at the currently programmed deceleration rate.

 Velocity control instructions are summarized in Table 11.2.

 Table 11.2 - VELOCITY CONTROL INSTRUCTIONS

Instruction Format Ref. Page

f_decel labe lf_decel controller# 152
jog_ccw label jog_ccw controller# 204
jog_cw label jog_cw controller# 205
l_track_spd label l_track_spd controller#,speed 206
track_spd label track_spd controller#,speed 292
vel_ccw label vel_ccw controller# 297
vel_cw label vel_cw controller# 298

11.5 POSITIONING INSTRUCTIONS

 MSC Controllers support two types of positioning instructions - absolute and incremental. Absolute motions

are made relative to the zero or home position for the controller. Incremental motions are made relative to
the current controller position. An absolute move is referred to as a position. An incremental move is
called an index.

 Positioning instructions are listed in Table 11.3.

 Table 11.3 - POSITIONING INSTRUCTIONS

InstructionFormat Ref. Page

Index label index controller#,distance 200
Position label position controller#,abs_position 226

11.6 PIECEWISE PROFILES

11.6.1 DESCRIPTION

 Piecewise Profiles provides a simple means of defining complex motion profiles as a series of speeds,

accel/decel rates and distances.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MOTION INSTRUCTION IB-11C001

Page 60 JUNE 1995

 MSC controllers perform piecewise motion profiles according to the following guidelines:

 A. If the present motor speed is LESS than the speed specified by the next profile segment, then:

 1. Accelerate to the new speed.
 2. Continue at the new speed until the distance specified has been moved. NOTE - some of

the distance is used during acceleration.

 B. If the present motor speed is GREATER than the speed specified by the next profile segment, then:

 1. Continue at the old speed until the specified distance less the distance needed to

decelerate has been traveled.
 2. Decelerate to the new speed.

11.6.2 BUILDING PROFILE DATA TABLES

 Profile data tables are organized as a series of profile segments. Each profile segment consists of a target

speed (in RPM), an acceleration value (in revs/second2) and a distance (in bits). The last profile segment in
a profile must contain a zero speed. All profile segments in a given profile must contain direction values of
the same sign.

 Profiles may be conveniently entered using the data definition capability of Macroprogramming Language.

The following example defines a simple piecewise profile.

 prodatabegin_data
 data 500,100,6.2*4096
 data 1000,200,8.6*4096
 data 0,150,15.2*4096
 end_data

 The profile above can be described as follows:

 1. Accelerate to 500 RPM at an acceleration rate of 100 revs/sec2, continue until the motor has turned

6.2 revolutions (including acceleration distance).
 2. Accelerate to 1000 RPM at an acceleration rate of 200 revs/sec2. Continue at that speed until the

motor has traveled 8.6 additional turns (including acceleration distance).
 3. Continue at 1000 RPM as long as necessary, then decelerate to zero speed at a deceleration rate

of 150 revs/sec2. The Total distance traveled in this segment is 15.2 motor revolutions, including
deceleration distance.

 4. The total distance traveled in the profile is 30 revolutions.

 A sample program segment to execute this sample profile is shown in Figure 11.2.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MOTION INSTRUCTIONS

JUNE 1995 Page 61

 Figure 11.2 - PIECEWISE PROFILES EXAMPLE PROGRAM SEQUENCE

pw_calc equ 90 calcs busy flag

prodata begin_data
 data 500,100,6.2*4096
 data 1000,200,8.6*4096
 data 0,150,15.2*4096
 end_data
 .
 .
 prep_profile 1,prodata send profile
ck_calc if_stat_on pw_busy,ck_calc wait for calcs
 get_pstat 1,status
 if status<>0,calc_err error routine
 .
 exec_profile 1 do the profile
wt_busy if_stat_on busy,wt_busy wait til done
 .
 (instructions performed when execution is ok)
 .

! Error handler

calc_err
 if status=0,profile_ok all zero = OK
 let_byte piece=status[3] get piece
 let_byte error=status[2] get error code
 .
 (process errors here)
 .
 .

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MOTION INSTRUCTION IB-11C001

Page 62 JUNE 1995

Piecewise motion profiles may also be calculated by a macroprogram and stored in an array in the
appropriate format. This format is always

 speed
 accel
 distance
 speed
 accel
 distance
 speed
 accel
 distance
 .
 .

 The maximum number of profile segments allowed in a piecewise profile is 96. Note that the last segment in

a piecewise profile must have a zero speed.

 In the MSC-850/32, MSC-850, MSC-800 and MSC-250 controllers, Piecewise profile data shares the same

memory area as cam data. Piecewise profile data is always placed in the axis controllers memory starting at
location zero.

11.6.3 PIECEWISE PROFILES AND MASTER SLAVE

 It is possible to send a piecewise profile to an axis controller card and to instruct the controller card to

execute the profile whenever another axis controller reaches a specified angular position. Refer to Section
13.7, page Error! Bookmark not defined., for a discussion of this technique.

 Table 11.4 lists Piecewise profile instructions.

 Table 11.4 - PIECEWISE PROFILE INSTRUCTIONS

Instruction Format Ref. Page

exec_profile label exec_profile controller# 150
get_pstat label get_pstat controller#,status 177
prep_profile label prep_profile controller#,array_label 227
set_trig_pw label set_trig_pw controller#,master_angle 280

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MOTION INSTRUCTIONS

JUNE 1995 Page 63

11.7 READING CONTROLLER POSITION

 The MSC-850/32 and MSC-850 provides a means for reading the current transducer position for the ACR-

850 and ACE-850 Controllers, as well as for the MCF card when it is being used as a "pseudo axis." It is
possible to read two types of position data from an axis controller:

 1. Actual Position - The get_pos instruction returns the actual position of the corresponding transducer

in the format described in section 11.2.1.

 2. Commanded Position - The get_com instruction returns the commanded position for the specified

controller. Commanded position is usually slightly different than actual position. The difference is
referred to as following error.

Note that for the "pseudo axis", commanded position is always
equal to actual position.

 Table 11.5 summarizes instructions for reading controller positions.

 Table 11.5 - INSTRUCTIONS FOR READING CONTROLLER POSITION

Instruction Format Ref. Page

get_com label get_com controller#,variable 165
get_fol_err label get_fol_err controller#,variable 166
get_pos label get_pos controller#,variable 176

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INTERRUPTS IB-11C001

Page 64 JUNE 1995

 12.0 INTERRUPTS

12.1 DESCRIPTION

 It is often necessary for an MSC controller, and therefore the Macroprogram, to respond rapidly to an

external event, such as a switch closure or an operator input. Macroprogramming Language provides two
methods for responding to this type of event.

 Software Interrupts provide a means for a Macroprogram to respond to changes in state of any MSC flag.

Hardware Interrupts provide a means for a Controller Module to perform a preprogrammed task immediately
on receipt of an input signal.

12.2 SOFTWARE INTERRUPTS

 The Software Interrupts feature of the MSC provides for automatic Macroprogram response to the change in

state of any MSC flag (I/O, timer, motor status or user).

 This feature functions by allowing the programmer to associate the change of state of a flag with a

Macroprogram subroutine. Whenever the specified change occurs, the MSC makes a note of what it was
doing, and then transfers control to the associated subroutine just as though a gosub instruction was
performed. When the subroutine is completed, control passes back to the interrupted operation.

 In the MSC-850/32 and MSC-850, Software Interrupts are checked between the execution of Macroprogram

instructions. Therefore, program activities such as downloading large cams can hold off the recognition of
software interrupts.

 In the MSC-250, Software Interrupts are checked once every millisecond.

 Software Interrupt processing provides up to 32 prioritized interrupts ranging from priority 0 (highest) to 31

(lowest). If more than one interrupt occurs at the same time, the one with the LOWEST event number
(highest priority) will be recognized first. The user may disable all or selected software interrupts during
portions of the macroprogram which should not be "interrupted".

 Software Interrupt processing is edge triggered -- the specified gosub will occur only on the leading or

trailing edge of the specified transition, depending on the type of interrupt specified. For example, if a
software interrupt is specified to occur whenever input module number 1 turns on, and software interrupt
processing is enabled while input module number 1 is already on, no software interrupt will occur. The
interrupt will only occur when the transition from the off to the on state occurs.

 A description of the macro instructions associated with software interrupts is at the end of this chapter.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INTERRUPTS

JUNE 1995 Page 65

12.3 HARDWARE INTERRUPTS

 In some cases, it is desirable for a particular Controller Module to respond very rapidly to an external event.

For these instances, MSC-850/32, MSC-850 and MSC-250 Controllers provide a feature called Hardware
Interrupts.

 Each axis controller is directly connected to the corresponding I/O Module Controller slot. For example,

 Controller #1 is linked to I/O-1 (flag 0)
 Controller #2 is linked to I/O-2 (flag 1)
 .
 .
 .
 .
 Controller #8 is linked to I/O-8 (flag 7)

 Hardware Interrupts can be processed much faster than conventional Input/Output handling since the Main

Processor distributes the desired task to the Controller before the interrupt occurs rather than waiting for the
Input module to be activated, then distributing the task or instruction. Because of this, Hardware Interrupts
are capable of 1 millisecond response times.

 The following is a list of the tasks or instructions which can be executed by an axis Controller when the

corresponding hardware interrupt signal is detected:

 trap_pos lock
 over_draw ratio
 index exec_profile
 position f_decel

 Each instruction above is used with the hardware interrupt feature by issuing an enable_hwi instruction,

followed by the instruction to be executed when the interrupt is detected.

 NOTE

When using the trap_pos instruction with a controller using encoder
for feedback (ACE-850, MSC-250), the marker correction feature is

disabled until the hardware interrupt is recognized.

 The following example would instruct Controller #1 to index 2048 bits when input module I/O-1 changes from

a low to high state:

 label enable_hwi
 index 1,2048

 Execution of this pair of instructions causes the Main Processor to instruct the appropriate Controller card

that it should now monitor its hardware interrupt signal and perform the designated operation when the
interrupt signal is activated. The axis controller responds by enabling its BUSY and HWI ARMED flags.
After the controller detects the interrupt and completes the task, its BUSY and HWI ARMED flags will be
disabled. It is the programmers responsibility to issue this pair of instructions again if it is desired to perform
the task again.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INTERRUPTS IB-11C001

Page 66 JUNE 1995

 The programmer can cancel an armed task by issuing the instruction disable_hwi. This instruction has 1
parameter - the slot # of the Controller card which is currently monitoring the hardware interrupt signal. On
receipt of the disable_hwi instruction, the Controller's BUSY and HWI ARMED status flags will be turned
off.

 Only 1 task can be executed per interrupt. If more than 1 task is issued, the most recent will be used.

12.4 INTERRUPT INSTRUCTIONS

 Table 12.1 lists software and hardware interrupt instructions.

 Table 12.1 - SOFTWARE AND HARDWARE INTERRUPT INSTRUCTIONS

Instruction Format Ref. Page

clr_all_swi label clr_all_swi 127
clr_swi label clr_swi interrupt# 132
disable_hwi label disable_hwi controller# 139
disable_swi label disable_swi 140
enable_hwi label enable_hwi 143, 144
enable_swi label enable_swi 145
f_decel label f_decel controller# 152
get_trap_pos label get_trap_pos controller#,variable 182
over_draw label over_draw controller#,speed,limit,distance 221
set_swi_mask label swt_swi_mask variable 277
swi_if_off label swi_if_off interrupt#,flag,sub_label 283
swi_if_on label swi_if_on interrupt#,flag,sub_label 284
trap_pos label trap_pos controller# 293

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MASTER SLAVE CONCEPTS IB-11C001

Page 68 JUNE 1995

13.2 SIMPLE LOCK (ELECTRONIC GEARBOX)

In simple lock mode, the position of the master axis is used directly to determine the proper slave axis
position and speed. Figure 13.1 illustrates simple lock mode. In this example, the master axis and slave
axes were positioned to zero before entering master slave lock. Slave axis 1 has a ratio of 2, and slave axis
2 has a ratio of 0.5.

Note the motion profile of each slave in relationship to the master. Slave axis 1
always travels at twice the speed of the master. The distance traveled by slave 1 is
twice that of the master. Slave 2 travels at half the speed of the master and moves
half the distance.

13.2.1 USEFUL FACTS ABOUT SIMPLE LOCK MODE

 1. Ratios are treated as 12 bit fractions. To express a ratio of 1.0, the actual argument in the ratio

instruction would be 4096.

 2. Allowed values for ratio are from -8.000 to +7.9999 (-32768 to +32767 bits). Positive ratios cause a

slave axis to turn in the same direction as the master; negative ratios cause counter rotation.

 3. At the start of a Macroprogram, the ratio value for each axis is set to one-to-one (+4096 bits).

 4. The recommended sequencing for establishing master/slave lock is as follows:

A. If necessary, position the master and/or slaves to the desired locations.

 B. Establish the accel/decel rates for the slaves. For certain lock methods, a high acceleration

rate is needed to insure that the slave axis closely maintains the configured ratio between
itself and the master axis.

 C. Issue a set_map instruction to start the information flow between the master and the slave

(see Section 13.4).

 D. Lock the slave axis using the simple lock mode (mode 1).

 E. Set the desired ratio for the slave axis.

 F. Proceed with the desired motion for the master axis.

 Steps D through E can be used to lock on to a master axis already in motion.

 5. A typical sequence for ending simple lock is:

 A. Unlock the slave axis using the unlock instruction.

 B. Set the ratio for the slave axis to zero.

 C. Terminate the master angle passing process by issuing a set_map instruction with no

source axis.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MASTER SLAVE CONCEPTS

JUNE 1995 Page 69

 D. Determine that the slave axis has stopped by testing its AXIS BUSY status flag.

 6. Ratio may be changed at any time during simple lock mode. The slave axis will simply break lock,

accelerate or decelerate at the currently programmed rate to match the master speed at the new
ratio, and re-enter lock.

 7. While in master/slave lock, a slave axis will ignore all motion instructions except forced deceleration.

 Issuing a f_decel instruction will break lock and cause the slave axis to stop.

13.3 LOCK METHODS FOR SIMPLE LOCK

 There are four lock methods which can be used in simple lock applications. Each method and its function

are outlined in Table 13.1.

 Table 13.1 - LOCK METHODS FOR SIMPLE LOCK

Lock Method Description

 1 Simple lock with acceleration limit. Slave tracks master position as long as

currently set accel/decel rate is not exceeded.

 2 Velocity Lock. Slave tracks master velocity, with accel/decel rate limit.

 4 Simple lock with no acceleration limit.

 6 Keyway to Keyway lock. Ratio is forced to be 1.0. On receipt of lock

command, slave axis aligns its position transducer to match that of master.
 Accel/decel rate limit is used.

 Details for each of these lock methods are presented below.

13.3.1 LOCK METHOD 1

 Lock Method 1 provides the electronic equivalent of a gearbox. The electronic gearbox or ratio is driven by

the master angle from one of the master angle buses. The master angle is processed by the previously
specified ratio instruction and an offset is added, resulting in an effective master used to drive the slave
command position.

 When the lock instruction is executed, with a lock method of 1, the axis Controller calculates the

instantaneous offset between the master angle processed by the ratio and the slave command position.
Once the offset is calculated, master slave lock is accomplished. Once per millisecond (MSC-850) or once
every 488 microseconds (MSC-250) thereafter, the slave axis position is updated based on the new master
position.

 The slave motion is limited by the previously executed set_ac_dc instruction and further limited to a

maximum speed of 3600 RPM. The limiting of the slave acceleration rate can be an advantage in systems
that have rough or rapidly changing master speeds. The limited acceleration on the slave dampens the
slave motor and smooths out the operation.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MASTER SLAVE CONCEPTS

JUNE 1995 Page 71

13.3.2 LOCK METHOD 4

 Lock method 4 is identical to lock method 1, except that the slave is not limited by the specified slave

acceleration rate. This means that during lock, the slave is commanded directly by the effective master
position.

Note that any perturbations or roughness in the master will be
passed onto the slave with no rate limiting.

 The ratio instruction can be executed during Lock Method 4. When a new ratio is executed, the slave

controller breaks lock, slews to new lock speed at the specified acceleration rate and relocks using the
above equation. The MOTOR JOGGING status flag is on during the slew period. Note that after the slew
period a new offset is calculated. The acceleration rate may be changed during slew by executing a
set_ac_dc instruction prior to the ratio instruction.

13.3.3 LOCK METHOD 6

 Lock method 6 allows the user to align the absolute position of the slave with the absolute position of the

master. The ratio in Lock Method 6 is fixed at 1:1 and may not be changed. The slave controller
acceleration rate is limited by the previously executed set_ac_dc instruction. The slave top speed is also
limited to 3600 RPM.

 When the lock instruction is executed, the slave controller executes the following equation every 1

millisecond.

 Master Angle = Slave Command Position

 This equation is executed modulo 1 turn (4096 bits) of the master. This means that when the lock

instruction is executed, the slave will move, at the acceleration rate specified, in the shortest direction to
bring the master and slave absolute angles into alignment. Note that Lock Method 6 can cause movement
when lock is executed even if the master is at rest.

 The slave acceleration and speed are limited. Hunting can occur if the master rate of change is greater than

the specified slave acceleration rate. The rule of thumb of having the slave acceleration rate at least 5 times
the expected master rate of change is applicable. The limited acceleration rate can be used to smooth a
master with fast perturbations (roughness).

13.4 ELECTRONIC CAMS

 The MSC multi-axis controllers provide a mode of operation that effectively emulates mechanical cams. In

the electronic cam mode, slave axes follow digital cams based on the rotation of a master axis.

 Electronic cams are tables of incremental motor moves. Each incremental value occupies one byte of

memory in the MSC and has an allowable range of -127 to +127. (A value of 128 is used to signal the end
of the cam). As the master axis turns, its position is continually transmitted onto the data bus. The slave
controller uses the current master position to determine the proper index into the electronic cam array. As
the index moves through the cam table, the incremental distances are added together to form the proper
slave axis position. Linear interpolation is performed between elements in the cam array. When the end of
the cam table is reached, the process begins again at the beginning of the table.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MASTER SLAVE CONCEPTS IB-11C001

Page 72 JUNE 1995

The key MSC macro instruction for electronic cam mode is the cam_data instruction.

 This instruction transmits the electronic cam from the MSC master processor to the specified Controller and

establishes the scaling factors for master position data and the cam array data. Master and data scaling are
explained in the paragraphs below.

13.4.1 MASTER SCALING

 Master scaling provides a mechanism to control the rate at which a slave axis proceeds through its cam

array relative to the rate at which the master axis turns.

 Positional information within the MSC is treated as a 24 bit binary number. The least significant half (12 bits)

of the number refers to the position within the current motor revolution, and the most significant half serves
as a turn counter.

 In electronic cam mode, the master scale factor refers to the number of times the master position value is

divided by 2 (i.e. shifted right) by the slave processor. For example, if a master scale factor of 12 were used,
the slave processor would divide the master position value by 4096 (212). The slave processor then
compares the least significant 12 bits of the scaled value to the previous scaled master position to determine
if it has changed. If the value has changed, the cam array index is changed accordingly.

 Table 13.2 summarizes the effect of master scaling.

 Table 13.2 - MASTER SCALING

Master Cam Array
Scale Advances
Factor Every

12 full turn
11 1/2 turn
10 1/4 turn
 9 1/8 turn
 8 1/16 turn
 7 1/32 turn
 6 1/64 turn
 5 1/128 turn
 4 1/256 turn
 3 1/512 turn
 2 1/1024 turn
 1 1/2048 turn
 0 1/4096 turn

13.4.2 DATA SCALING

 In order to insure that each element of an electronic cam is in the range of -127 to +127, it is often necessary

to scale the cam data. This is accomplished by dividing the data by 2n where n is selected to cause the
largest element of the cam array to be less than -127 to +127.

 For example, if the largest element in a cam array is 864, we would need to divide by 8 (23) to reduce the
number below 128. The data scale factor in this case would be 3. Data scale factors from zero to 7 are
allowed.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MASTER SLAVE CONCEPTS

JUNE 1995 Page 73

13.4.3 IMPORTANT NOTES REGARDING ELECTRONIC CAMS

 The following items should be considered when using electronic cams (Note - These examples assume a
positive ratio value is being used):

 1. Positive cam data indicates to the slave axis that the slave should travel in the same direction as the
master axis.

 2. The cam data pointer will always start at the top of the cam table, unless the set_cam_ptr

instruction and lock method 5, 8 or 9 are used.

 3. The cam data pointer will move toward the cam data table terminator when the master axis is

traveling in the clockwise (CW) direction. The cam data pointer will move away from the cam data
table terminator when the master axis is traveling in the counter-clockwise (CCW) direction.

13.4.4 CALCULATING ELECTRONIC CAMS

 There are several ways that electronic cam data can be transferred to the appropriate axis controller:
 1. The cam data can be precalculated and placed in cam tables using the instructions begin_cam,

cam and end_cam. When the cam_data instruction is executed, the data defined in the cam table
will be transferred to the axis controller along with the 'master scale' and 'data scale' values. The
cam table terminator character (hex value 0x80) will be automatically transferred by the cam_data
instruction, as well.

 2. The cam data can be calculated by the Macroprogram, or off-line by another computing device.

This data can then be transferred to the axis controller using a series of let_byte instructions. The
programmer in this instance is reponsible for sending the cam table terminator character (hex value
0x80) as the last cam data table element. When the cam_data instruction is executed, only the
'master scale' and 'data scale' values are transferred to the axis controller, since it is expected that
the data has been previously transmitted.

 3. The cam data table can be calculated by the axis controller using the calc_unit_cam instruction.

When using this approach, a data table defining the 'shape' of the profile is transitted to the axis
controller. The programmer then issues a calc_unit_cam instruction which will calculate the cam
data table. When the cam_data instruction is executed, only the 'master scale' and 'data scale'
values are transferred to the axis controller, since it is expected that the data has been previously
calculated.

 In applications where it might be desirable to compute an electronic cam based on a predetermined shape,

such as a modified sine or trapezoidal type motion profile, the calc_unit_cam instruction can be used to
greatly simplify this process.

 The general process for using the calc_unit_cam instruction is as follows:

 DEFINE THE MOTION SHAPE BY CREATING A 'UNIT CAM' TABLE

 1. Either graphically or mathematically describe the motion profile desired. The profile should be a
function of distance versus machine angle or other appropriate X-axis value.

 2. Measure and tabulate the value of distance at 128 equally spaced X-axis intervals over the duration

of the profile.

 3. Normalize the distance values by dividing each tabulated value by the largest value in the table.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MASTER SLAVE CONCEPTS IB-11C001

Page 74 JUNE 1995

 4. Scale each table value by multiplying it by 65,536 (216).

 5. Add a zero element to the beginning of the table and replicate the last element in the table, so that

the resulting table has 130 elements.

 These steps result in a 'unit cam' table, which can then be used to generate cams of various lengths and

number of elements.

 TRANSFER THE 'UNIT CAM' TABLE TO THE AXIS CONTROLLER

 6. Dimension data storage areas on the axis controller of interest as follows:

 cam_area dim axis#,6750
 table_area dim axis#,130

 The labels 'cam_area' and 'table_area' may be named whatever you desire. The dimension

numbers must be as shown. It would also be acceptable to have more than one 'cam_area'
defined, as long as the total is equal to 6750 (this is 6750 4-byte elements totaling 27000 bytes).
This is due to the fact that the axis controller expects to find the start of the 'table_area' at memory
location 6750.

 7. Load the 'unit cam' table into the axis controllers 'table_area' using the let instruction (the 130

entries in the 'unit cam' table are 4-byte values).

 CALCULATE THE CAM

 8. Determine the total distance to be represented by the cam, and the total number of cam elements

required.

 9. Issue the appropriate calc_unit_cam instruction. While the axis controller is busy calculating the

cam, its status flag for CALCULATING PW PROFILE is set.

 Note

 It is not necessary to issue a drive_on instruction before executing
 the calc_unit_cam instruction.

 10. Insert an end of cam character (hex value 0x80) at the appropriate place in the cam array.

 11. Issue a cam_data instruction so that the appropriate 'master scale' and 'data scale' are used.

 At this point, the axis controller contains a valid electronic cam. Processing can now follow normal cam

procedures.

 The instruction format for calc_unit_cam is as follows:

 calc_unit_cam axis#,distance,elements

 where 'axis#' is the axis controller number, 'distance' is the total distance in counts to be traveled and

'elements' is the size of the cam to be generated.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MASTER SLAVE CONCEPTS

JUNE 1995 Page 75

 EXAMPLE

 The following example illustrates the calc_unit_cam instruction and the steps taken to load the

predetermined 'unit cam' table named 'trap_1_3' into the axis controllers memory:

 msc_type 850
 declare off

 calc equ 74
 down equ 77
 busy equ 78
 lock equ 79

 axis_1 equ 1
 busy_1 equ (axis_1*16)+busy
 down_1 equ (axis_1*16)+down
 calc_1 equ (axis_1*16)+calc
 lock_1 equ (axis_1*16)+lock

 cam dim 1,6750
 table dim 1,130

!
 ! ----- TABLE FOR UNIT TRAPEZOIDAL CURVE 1/3,1/3,1/3 (SCALED by 2^15) -----
 !
 trap_1_3 begin_data
 data 0,9,36,81,144,225,324
 data 441,576,729,900,1089,1296,1521
 data 1764,2025,2304,2601,2916,3249,3600
 data 3969,4356,4761,5184,5625,6084,6561
 data 7056,7569,8100,8649,9216,9801,10404
 data 11025,11664,12321,12996,13689,14400,15129
 data 15876,16640,17408,18176,18944,19712,20480
 data 21248,22016,22784,23552,24320,25088,25856
 data 26624,27392,28160,28928,29696,30464,31232
 data 32000,32768,33536,34304,35072,35840,36608
 data 37376,38144,38912,39680,40448,41216,41984
 data 42752,43520,44288,45056,45824,46592,47360
 data 48128,48896,49660,50407,51136,51847,52540
 data 53215,53872,54511,55132,55735,56320,56887
 data 57436,57967,58480,58975,59452,59911,60352
 data 60775,61180,61567,61936,62287,62620,62935
 data 63232,63511,63772,64015,64240,64447,64636
 data 64807,64960,65095,65212,65311,65392,65455
 data 65500,65527,65536,65536
 end_data
 !
 ! ----- LOAD THE UNIT CAM TABLE INTO AXIS CONTROLLER #1 -----
 !
 load_table let ctr=0
 load_loop let t=trap_1_3[ctr]
 let table[ctr]=t
 let ctr=ctr+1

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MASTER SLAVE CONCEPTS IB-11C001

Page 76 JUNE 1995

 if ctr<130,load_loop

 !
 ! ----- CALCULATE THE CAM BASED ON UNIT CAM TABLE -----
 !
 let distance=40960
 let elements=2048
 let start_of_cam=0

 calc_unit_cam axis_1,distance,elements,start_of_cam
 calc_busy if_stat_on calc_1,calc_busy

 !
 ! ----- CALCULATE THE CAM SUM FOR THE CAM -----
 !
 let end_of_cam=elements-1

 calc_cam_sum axis_1,start_of_cam,end_of_cam
 sum_busy if_stat_on calc_1,sum_busy

 !
 ! ----- GET SUM, SHOULD EQUAL REQUESTED CAM DISTANCE -----
 !
 get_cam_sum axis_1,sum
 if sum<>distance,calc_err

 !
 ! ----- INDICATE THE CAM TO USE, MASTER SCALE AND DATA SCALE -----
 !
 cam_data axis_1,cam,5,0
 ratio axis_1,4096

.
.
.
.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MASTER SLAVE CONCEPTS

JUNE 1995 Page 77

13.5 ELECTRONIC CAM LOCK METHODS

 Table 13.3 - CAM LOCK METHODS

Lock Method Description

 0 Cam lock at beginning of cam data table.

 5 Cam lock at current cam pointer position. Used in conjunction with the set_cam_ptr

instruction to lock at other than the beginning of the cam data table.

 8 Cam Lock at current cam pointer position when specified master angle is crossed.

(See set_trig_cam)

 9 Same as Lock type 8 except execution of the cam is terminated at the last element in

the cam.

 10 Velocity cam lock.

 A detailed explanation of each of these lock methods follows.

13.5.1 LOCK METHOD 0

 When the lock instruction is executed with a lock method of 0, the axis controller puts the cam pointer at the

very top of the cam array, creates an instantaneous offset between the absolute master angle, on the
selected bus, and 0.00 effective master, then locks the axis to the master. Once per millisecond after the
lock instruction, the following equation is executed to drive the cam pointer.

 (Absolute master angle * ratio) + offset = effective master
 (2master scale)

 As this equation executes, the integer part of the effective master causes the cam pointer to move and the

fractional part is used to linearly interpolate cam elements. The offset value in the equation is set at lock to
yield a 0.00 effective master and is modified each time the cam pointer wraps around to maintain the cam
pointer within the cam data array.

 If the ratio is changed during lock in Lock Method 0, the offset is instantaneously changed to yield the same

effective master just before as just after the ratio instruction.

 Changing the ratio on the fly during Lock Method 0 does not cause a jump in the cam pointer, but does

cause a change in rate or direction of cam pointer movement. Since the slave speed and acceleration rate
are not limited, the slave servo may change speed abruptly. Caution should be used when changing ratio
when executing a cam.

 During Cam Lock Method 0, the pointer position in the cam data table can be captured using the

get_cam_ptr instruction.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MASTER SLAVE CONCEPTS IB-11C001

Page 80 JUNE 1995

13.7 PIECEWISE LOCK

 Piecewise lock, lock method 3, provides a means of triggering execution of a Piecewise profile in a slave

axis based on the master reaching a certain angular position. Refer to Section 11.7 for further details on
Piecewise profiles.

 To establish Piecewise lock, follow the steps outlined below.

 1. Build the profile as described in Section 11.7.

2. Establish appropriate master angle passing.

 3. Issue the prep_profile command to transfer the profile data to the slave axis card.

 4. Set up the trigger angle with the set_trig_pw instruction.

 5. Issue the lock command with lock method set to 3.

 When the specified master angle position is reached, the Piecewise profile will be executed.

13.8 MASTER ANGLE BUS

 The master angle bus is a high speed data highway which links the controllers in an MSC-850/32 or MSC-

850 System Unit. Each System Unit has two independent buses, designated as Master Bus A and Master
Bus B. The set_map Macroprogram instruction provides a means for the programmer to specify which
Controller talks as a master on a given bus and which Controller(s) listen as slaves.

 There can only be one controller as master on a bus. Any controller may be configured as a slave. One

slave controller may not be configured to listen to both masters, except for the MCF-850 card which can
listen to both.

 The set_map instruction uses a 4 byte word (32 bits) to define the total configuration. In the 32 bit variable,

two (2) bytes are used for each bus. One byte configures which controller is the master and the other byte
configures which controllers are the slaves. The set_bit instruction provides a convenient means of setting
the proper bits in the set_map variable.

 Figure 13.5 diagrams the configuration of the set_map variable for the MSC-850/32 and MSC-850. Figure

13.6 shows the configuration of the set_map variable for the MSC-250.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MASTER SLAVE CONCEPTS IB-11C001

Page 82 JUNE 1995

 Figure 13.6 - MSC-250 MASTER ANGLE BUS CONFIGUARTION CHART

 Consider an example where the Controller in slot 3 is to be the master axis, and Controllers in slots 1, 4, and
5 are to be slaves. Master bus A will be used for the data path. The following Macroprogram instructions
could be used to configure the master angle bus:

 talk_3 equ 29 Slot 3 talker on Bus A
 slave_1 equ 23 Slot 1 listen on Bus A
 slave_4 equ 20 Slot 4 listen on Bus A
 slave_5 equ 19 Slot 5 listen on Bus A
 .
 .
 let mapvar=0 clear all bits
 set_map mapvar stop all map activity
 set_bit talk_3,mapvar set appropriate bits
 set_bit slave_1,mapvar
 set_bit slave_4,mapvar
 set_bit slave_5,mapvar
 set_map mapvar get communications going
 (instructions to set up desired master slave modes)

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MASTER SLAVE CONCEPTS

JUNE 1995 Page 83

13.8.1 MASTER ANGLE BUS CAUTIONS

 It is important to note that the data being transmitted on a master angle bus is the current master position

transducer reading. Macroprogram instructions such as set_local or set_offset DO NOT affect the data
being transmitted on a master angle bus, but DO impact the logical position of an axis. Thus, it is possible to
read a position from a master Controller using a get_pos instruction and get a position value which does not
match the value being transmitted on the master angle bus.

 Another precaution regarding master angle bus data concerns ACE-850 controllers. Because encoders are

incremental devices, the ACE-850 sets its position transducer reading to zero on power up. Zero would be
transmitted on the master angle bus if the ACE-850 were commanded to be a master under these
circumstances. If a find marker instruction was then issued to the ACE-850, data being sent on the master
angle bus would undergo a step change as the ACE-850 located the encoder marker pulse. It is
recommended that the find marker instruction be done for an encoder based master Controller before the
Controller is instructed to transmit on the master angle bus.

13.9 FIBER OPTIC NETWORK

 The Fiber Optic Network feature of the MSC-850 provides a means of extending Master Angle Bus

communications to multiple MSC-850 System Units. This function is provided by the MCF-850 Controller.

 The MSC-250 has one fiber optic receiver. This allows a link between an MSC-850/MCF-850 and an MSC-

250.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MASTER SLAVE CONCEPTS IB-11C001

Page 84 JUNE 1995

 Figure 13.7 - MSC-850/MCF-850 CONFIGURATION CHART

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MASTER SLAVE CONCEPTS

JUNE 1995 Page 85

 Figure 13.8 - MSC-250 MULTI-FUNCTION CONFIGURATION CHART

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MASTER SLAVE CONCEPTS IB-11C001

Page 86 JUNE 1995

 Each MCF-850 Controller has two fiber optic communications ports. Each port consists of a transmitter and
a receiver. The MCF-850 must be configured, using the set_mcf instruction, to complete the desired data
paths. Figure 13.7 shows the bit assignments used to define the network data paths.

 Each MSC-250 Controller has a single fiber optic communications port. This port contains a single receiver.

 There is port must be configured similar to the way the MCF-850 is configured using the set_mcf
instruction. Figure 13.8 shows the bit assignments used to define the network data paths.

 Consider the example diagrammed in Figure 13.9. In this example, three MSC-850 System Units are linked

in a daisy chain fashion. The location of master axes and communication interrelationships are shown in the
figure. The following Macroprogram segments could be used to establish the desired network configuration.

 Program for System Unit 1

 talk_3 equ 29 Slot 3 talker on Bus A
 slave_1 equ 23 Slot 1 listen on Bus A
 slave_4 equ 20 Slot 4 listen on Bus A
 slave_5 equ 19 Slot 5 listen on Bus A
 MABAA equ 0 Bus A is source for Fiber Optic A
 mcf_slot equ 6 MCF is in Slot 6
 .
 .
 let mcf_var=0
 set_bit MABAA,mcf_var Master bus A is Fiber Optic A source
 set_mcf mcf_slot,mcf_var

 let mapvar=0 clear all bits
 set_map mapvar stop all map activity
 set_bit talk_3,mapvar set appropriate bits
 set_bit slave_1,mapvar
 set_bit slave_4,mapvar
 set_bit slave_5,mapvar
 set_map mapvar get communications going
 .
 (instructions to set up desired master slave modes)
 .

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MASTER SLAVE CONCEPTS

JUNE 1995 Page 87

Program for System Unit 2

 talk_1 equ 29 Slot 1 talker on Bus B
 slave_2 equ 23 Slot 1 listen on Bus B
 slave_3 equ 20 Slot 4 listen on Bus B
 MABAA equ 0 Bus A is source for Fiber Optic A
 MABBB equ 13 Bus B is source for Fiber Optic B
 mcf_slot equ 4 MCF is in Slot 4
 .
 .
 let mcf_var=0
 set_bit MABAA,mcf_var Master bus A is Fiber Optic A source
 set_bit MABBB,mcf_var Master bus B is Fiber Optic B source
 set_mcf mcf_slot,mcf_var

 let mapvar=0 clear all bits
 set_map mapvar stop all map activity
 set_bit talk_1,mapvar set appropriate bits
 set_bit slave_2,mapvar
 set_bit slave_3,mapvar
 set_map mapvar get communications going
 .
 (instructions to set up desired master slave modes)
 .

Program for System Unit 3

 slave_1A equ 23 Slot 1 listen on Bus A
 slave_2B equ 20 Slot 2 listen on Bus B
 slave_3B equ 19 Slot 3 listen on Bus B
 MABAA equ 0 Bus A is source for Fiber Optic A
 MABBB equ 13 Bus B is source for Fiber Optic B
 mcf_slot equ 4 MCF is in Slot 4
 .
 .
 let mcf_var=0
 set_bit MABAA,mcf_var Master bus A is Fiber Optic A source
 set_bit MABBB,mcf_var Master bus B is Fiber Optic B source
 set_mcf mcf_slot,mcf_var

 let mapvar=0 clear all bits
 set_map mapvar stop all map activity
 set_bit slave_1A,mapvar
 set_bit slave_2B,mapvar
 set_bit slave_3B,mapvar
 set_map mapvar get communications going
 .
 (instructions to set up desired master slave modes)
 .

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MASTER SLAVE CONCEPTS IB-11C001

Page 88 JUNE 1995

System Unit #1 has a Controller talking on Master Bus A. System
Unit #1 has no need for information from System Unit #2 or #3.
Master Controller in slot 3. Slave controllers in slots 1, 4, and 5.
MCF-850 Controller in slot 6.

System Unit #2 has a Controller talking on Master Bus B. System
Unit #2 has no need for information from System Unit #1 other than
to pass the data to System Unit #3. Master Controller in slot 1.
Slaves in 2 and 3. MCF-850 in slot 3.

System Unit #3 has slave controllers listening to both Master
Angle Busses. Master Angle Bus A receives data from Fiber
Optic Port A. Master Angle Bus B receives data from Fiber Optic
Port B. Bus A slave in slot 1. Bus B slaves in slots 2 and 3.
MCF-850 in slot 4.

Figure 13.9 - DAISY CHAIN FIBER OPTIC NETWORK

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MASTER SLAVE CONCEPTS

JUNE 1995 Page 89

13.10 MASTER SLAVE INSTRUCTIONS

 Table 13.4 summarizes master slave instructions.

 Table 13.4 - MASTER SLAVE INSTRUCTION SUMMARY

Instruction Format Ref. Page

calc_cam_sum label calc_cam_sum controller#,start_element,ending_element 120
calc_unit_cam label calc_unit_cam controller#,distance,# elements,start_element 121
cam_data label cam_data controller#,label,ms,ds 123, 124
get_cam_cnt label get_cam_cnt controller#,variable 160
get_cam_end label get_cam_end controller#,variable 161
get_cam_ptr label get_cam_ptr controller#,variable 162
get_cam_strt label get_cam_strt controller#,variable 163
get_map label get_map variable 168, 169
get_map_stat label get_map_stat variable 170
get_mcf label get_mcf controller#,variable 171, 172
incr_com label incr_com controller#,bits,interrupts 199
lock label lock controller#,lock# 211
ratio label ratio controller#,ratio 233
set_cam_ptr label set_cam_ptr controller#,value 243
set_map label set_map variable 254
set_mcf label set_mcf controller#,variable 258
set_trig_cam label set_trig_cam controller#,master_angle 279
switch_cam label switch_cam controller#,start_element 285
unlock label unlock controller#,mode# 296

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
PROGRAMMABLE LIMIT SWITCHES IB-11C001

Page 90 JUNE 1995

 14.0 PROGRAMMABLE LIMIT SWITCHES

14.1 DESCRIPTION

 MSC-850/32, MSC-850 and MSC-250 controllers provide a means of switching output modules on and off in

relationship to the position of a master axis. This function, called Programmable Limit Switch (PLS), is
similar to that provided by mechanical cam or drum switches. The MCF-850 Multi-Function Controller and
the MSC-250 Controller provides basic PLS capabilities. For applications with high performance
requirements, the HPL-850 High Speed Programmable Limit Switch controller is better suited. Each of
these options is described in detail below.

14.2 MSC-850/MCF-850 and MSC-250 PLS FUNCTIONS

 One of the features of the PLS-850 controller and the MSC-250 is the Programmable Limit Switch feature.

There are 24 PLS output flags available. These flags can be switched on and off, depending on the position
of the master angle being used to drive the PLS function. These flags consist of 16 hardware modules and
8 software outputs. In the MCF-850, the 16 hardware modules are located on a PLS-850 rack. In the MSC-
250, they may be 16 modules located at the on-board I/O, I/O expander #1 or I/O expander #2. Four of the
eight software outputs are flags, and can be used to trigger software interrupts. The state of all 24 flags can
be monitored using the get_pls_out instruction.

The user's Macroprogram specifies set points (angles) of the master angle bus where the 24 flags should be turned

ON and OFF. During program execution, this angular position is monitored, and the outputs are turned ON
and OFF according to the programmed set points.

14.2.1 PROGRAMMING

 Before attempting to write a Macroprogram using the Programmable Limit Switch feature of the MSC, it is

important to understand the following:

 1. Only one ON and OFF angle may be programmed for each output. If the controller receives a

second set of data for an output, it will replace the existing data with new data.

 2. The ON and OFF set points are interpreted assuming a clockwise direction of rotation. For

example, ON at 1000, OFF at 2000, means that an output will be on whenever the master angle
position is between 1000 and 2000 bits. However, ON at 2000, OFF at 1000, means that an output
will be off between 1000 and 2000 bits, and on for the remainder of the master rotation.

 3. The switching of individual output modules may be masked off without reprogramming the PLS

function.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 PROGRAMMABLE LIMIT SWITCHES

JUNE 1995 Page 91

14.2.2 PROCESSING

 When the controller receives a set_pls_ang instruction, it searches the programmed data for an existing

record for the specified output. If a matching record is found, it will be replaced by the new data.

 While this instruction is being processed, the CALCULATING flag of the axis controller will be activated. The

Macroprogram must verify that this flag is no longer active before executing subsequent set_pls_ang
instructions. The axis processor will ignore any set_pls_ang instructions issued while the CALCULATING
flag is activated.

14.2.3 EXECUTION

 The controller monitors data from a master angle bus and turns ON and OFF the outputs at programmed set

points. No change in state from OFF to ON will occur if a particular switch output is disabled through the use
of the set_pls_mask instruction. Changes in state from ON to OFF will still occur at the programmed set
point even if a particular limit switch is disabled.

 NOTES

The angular position can come from one of several sources, as

programmed by the set_mcf instruction.

 MSC-850/MCF-850 MSC-250
 A. Pseudo Axis A .Pseudo Axis
 B. Master Angle Bus A B. Master Angle Bus A
 C. Master Angle Bus B C. Master Angle Bus B
 D. Fiber Optic Channel A D. Fiber Optic Receiver

E. Fiber Optic Channel B

 When the MSC is powered down, all of the PLS (programmable limit switch) data is lost. This data must be

reset on power up by the macroprogram.

14.3 HIGH PERFORMANCE PROGRAMMABLE LIMIT SWITCH (MSC-850/HPL-850)

 The high performance programmable limit switch controller (HPL-850) is intended as a replacement for

mechanical limit switches. Its function is to monitor angular position received on one of two master angle
data buses, and to turn on and off outputs at programmed set points. The HPL-850 was designed for
systems requiring multiple master turns per 360 degree cycle. The maximum number of turns per 360 cycle
is 256. The HPL-850 is also equipped with a time advance feature. This allows the programmer to advance
the on and off settings for an output by a specified time.

 There are 24 outputs which may be turned on and off at set points specified in a Macroprogram. Sixteen of

these are outputs residing on PLS-850 output rack. The remaining 8 switches are software flags. The first
four of these may be programmed to generate software interrupts in the Macroprogram.

 The application Macroprogram specifies the source of the master angle data (master angle bus A or B),

establishes the set points of the master angle where switches are to be turned ON and OFF, and sets any
time advances to be used. During program execution, the HPL-850 monitors master angle position and
turns on and off switches according to the programmed set points.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
PROGRAMMABLE LIMIT SWITCHES IB-11C001

Page 92 JUNE 1995

14.3.1 THEORY OF OPERATION

 The HPL-850 has no direct position sensor. The input angle data must be supplied by one of two Master

Angle Data Buses.
 The programmer specifies a rollover point for the HPL. This value represents the point at which the HPL's

accumulator will reset. For example, if a particular process completes one cycle in 4.5 turns of a master
resolver, the rollover point could be specified as 4.5*4096, or 18432. The accumulator value may be
initialized to a value between zero and the rollover point set by the preset instruction.

 An internal data table holds a series of 24 bit values representing the state of the 24 output flags at each of

8192 possible accumulator values. This table is created from the set_pls_ang instructions issued in the
application Macroprogram.

 The HPL-850 uses its accumulator value, appropriately scaled, to create a pointer into this data table. The

data table contents are then sent to the HPL-850 output functions (16 outputs and 8 user flags).

14.3.2 PROGRAMMING CONSIDERATIONS

 Before attempting to write a Macroprogram using the Programmable Limit Switch function of the HPL-850, it

is important to understand the following:

 1. Only one ON and OFF angle may be programmed for each output. If the HPL-850 receives a

second set of data for an output, it will replace the existing data with new data.

 2. The ON and OFF set points are entered assuming a CW direction of the angle.

 3. The set_pls_mask instruction may be used to disable or enable output switching without

reprogramming the PLS function.

 4. The master angle bus data source (set_mcf) must be configured before issuing a set_gl_cw,

set_gl_ccw or set_local instruction.

 5. The time advance feature is meant to be used on machines with steady velocity inputs. Output

results can be difficult to predict during accel/decel curves due to changing velocity.

 6. The time advance parameters should never allow the output signal to advance into the next cycle.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 PROGRAMMABLE LIMIT SWITCHES

JUNE 1995 Page 93

14.4 HPL-850 PROGRAMMING EXAMPLE #1

 The Master Angle Bus A is fed by a resolver rotating one revolution for one machine cycle. The system

requires an output to be on between 160o and 200o. This output fires an air cylinder which has a 50
millisecond time delay, requiring the output signal to be advanced by 50 milliseconds.

 The following Macroprogram excerpt could be used for this application.

 hpl equ 3 HPL-850 card is in slot 3
 hpl_calc equ 122 calculating data flag, slot 3
 pls_cnt equ 4096 4096 counts per machine cycle

 ! constants to define on angle and off angle

 on_angle equ (4096*160)/360
 off_angle equ (4096*200)/360

 air_cyl equ 0 module 0 is air cylinder output
 time_adv equ 5 advance 5 timer ticks = 50 ms.

 .
 .
 set_hpl hpl,1 data source is Master Bus A
 set_pls_cnt hpl,pls_cnt set counts per cycle

 ! set up the on, off angles and the output module number

 set_pls_ang hpl,on_angle,off_angle,air_cyl
 w1 if_stat_on hpl,hpl_calc,w1

 ! set up the time advance

 set_pls_time hpl,time_adv,air_cyl
 w2 if_stat_on hpl,hpl_calc,w2

 ! set the HPL-850 accumulator to zero (assume master is already at zero)

 set_local hpl
 .
 (continue program execution)

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
PROGRAMMABLE LIMIT SWITCHES IB-11C001

Page 94 JUNE 1995

14.5 HPL-850 PROGRAMMING EXAMPLE #2

 A system drives a lead screw 26 revolutions. An oil mist solenoid is to come on between 14 and 21

revolutions. Master Angle Bus data is on Bus B. The following Macroprogram excerpt could be used for this
application.

 hpl equ 3 HPL-850 card is in slot 3
 hpl_calc equ 122 calculating data flag, slot 3
 pls_count equ 26*4096 counts per machine cycle

 ! constants to define on angle and off angle

 on_angle equ 14*4096
 off_angle equ 21*4096

 oil_mist equ 0 module 0 is oil mist output

 .
 .
 set_hpl hpl,2 data source is Master Bus B
 set_pls_cnt hpl,pls_count set counts per cycle

 ! set up the on, off angles and the output module number

 set_pls_ang hpl,on_angle,off_angle,oil_mist
 w1 if_stat_on hpl,hpl_calc,w1
 .
 .
 (instructions to initialize lead screw and position to zero)
 .
 .

 ! set the HPL-850 accumulator to zero (master is already at zero)

 set_gl_cw hpl_slot
 .
 .
 (continue program execution)
 .
 .

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 PROGRAMMABLE LIMIT SWITCHES

JUNE 1995 Page 95

14.6 PROGRAMMABLE LIMIT SWITCH INSTRUCTIONS

 Table 14.1 lists the Macroprogram instructions associated with Programmable Limit Switch Functions.

 Table 14.1 - PROGRAMMABLE LIMIT SWITCH INSTRUCTIONS

Instruction Format Ref. Page

get_angle label get_angle controller#,variable 158, 159
get_for_ang label get_for_ang controller,channel#,variable 167
get_pls_mask label get_pls_mask controller#,variable 173
get_pls_out labe lget_pls_out controller#,variable 174
preset labe lpreset controller#,variable 228, 229
set_gl_ccw labe lset_gl_ccw controller# 245, 246
set_gl_cw label set_gl_cw controller 247, 248
set_local label set_local controller# 252
set_mcf labe lset_mcf controller,variable 256
set_pls_ang label set_pls_ang controller#,on,off,module# 267
set_pls_cnt label set_pls_cnt controller#,count 272
set_pls_mask label set_pls_mask controller#,variable 274
set_pls_time label set_pls_time controller#,time,module# 275

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
EXTENDED MEMORY OPERATIONS IB-11C001

Page 96 JUNE 1995

 15.0 EXTENDED MEMORY OPERATIONS

15.1 DESCRIPTION

 The MSC-850/32 and MSC-850 provides three types of extended memory - volatile RAM, non-volatile RAM,

and EPROM memory. The MSC-250 provides two types of extended memory - volatile RAM and EPROM
memory.

 EPROM memory is accessed through the PROM Pocket built in to each MSC System Unit.

15.2 EXTENDED RAM MEMORY

 Using the MSC-850/32 or the MSC-850, the ACE-850, ACR-850 and ACY-850 Controllers have 28K bytes

of volatile data memory available for use by a Macroprogram. In the MSC-250, axis 1 and 2 have 28K bytes
of volatile data memory each. This memory can be used to create very high resolution electronic cam data
tables and for other operations which need large amounts of temporary storage.

 The MCF-850 Controller provides 32K bytes of non-volatile data memory. This memory can be used to

store data which must be retained even when power is shut off.

15.2.1 EXTENDED RAM MEMORY PROGRAMMING

 To create a data array in axis controller memory, a special form of the dim instruction is used:

 SYNTAX:

 label dim controller#,words

 PARAMETERS:

 label Name assigned to block of memory (array)

 controller# Axis ID #.

 words Length of data memory allocated to the label. Allocated in 4 byte (32 bit)

words

 Once this special form of the dim instruction has been executed, it is not necessary to reference this area in

memory by axis ID#. Values in these arrays are accessed using the let_byte and let instructions exactly the
same way as for any other array.

 WARNING!

Piecewise profiles and the conventional form of the cam_data instruction use memory from the 28K
volatile RAM area. It is the responsibility of the programmer to ensure that arrays declared with the
extended form of the dim statement do not overlap with piecewise profiles or conventional cams.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 EXTENDED MEMORY OPERATIONS

JUNE 1995 Page 97

15.2.2 EXTENDED MEMORY LIMITATIONS

 1. The prep_profile instruction for Piecewise profiles may not reference data stored in axis controller

memory. Data for this type of profile must reside in the master controller.

 2. The cam_data instruction can only reference data residing in the master controller or in axis

controller memory which is the target of the cam_data instruction.

 3. Depending upon the location of the data array, the cam_data instruction executes differently. If the

array is in the master controller's memory, the cam_data instruction transmits the array to the
specified axis controller, establishes pointers to the beginning and end of the cam array, and defines
both the master scale and data scale factors. If the array is in the axis controller's memory, the
cam_data instruction only establishes pointers to the beginning and end of the array, and the
master and data scale factors. No data transfer is executed.

15.3 EPROM MEMORY

 EPROM Memory on the MSC is controlled through a series of Macroprogram instructions called the

EPROM MANAGER. These instructions are used to read from and write to an EPROM chip contained in
the PROM POCKET. They are designed to simplify access to EPROM memory and are patterned after
similar commands in the BASIC language.

 In the MCF-850, the use of non-volatile data storage greatly diminishes the need to have a programming

device connected to the MSC-850 and can allow increased Macroprogram size.

 The PROM POCKET uses an INTEL D27256-1 UV erasable programmable ROM (EPROM) or compatible,

and provides 32K bytes of memory. Each MCF-850 also provides 32K bytes of data storage.

15.3.1 AUTOMATIC PROGRAM LOAD FROM EPROM

 The MSC power up sequence allows the automatic loading of a macroprogram from the PROM POCKET

EPROM. If an EPROM is in the PROM POCKET and the EPROM contains a Macroprogram file as the first
file, that Macroprogram will be loaded, execution will begin and the MSC AUTOSTART bit will be set. This
sequence will take place even if there is a valid Macroprogram already in the MSC and even if that
Macroprogram has been set to AUTOSTART.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
EXTENDED MEMORY OPERATIONS IB-11C001

Page 98 JUNE 1995

15.3.2 EPROM STATUS CODES

 Each EPROM Manager instruction returns a status code that indicates the result of the instruction. The

status return codes are shown in Table 15.1.

 Table 15.1 - EPROM STATUS CODES

CODE MEANING

0 Operation was successful
1 No EPROM present
2 End of file
3 File not found
4 Duplicate file name
5 Verify during write failed
6 EPROM Full
7 No file open/created
8 Bad unit identifier (<1 or >8)
9 Wrong mode (i.e. trying to write to an opened file)
10 Bad file type (i.e. trying to open a macroprogram file)
11 Unit busy - file already opened/created using this unit identifier
12 Attempt to create more than one file at a time
13 The sum of the 'program' and 'data' area exceeds 32,000 bytes

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 EXTENDED MEMORY OPERATIONS

JUNE 1995 Page 99

15.4 EPROM MANAGER INSTRUCTIONS

 Instructions for use with the EPROM Manager are summarized in Table 15.2.

 Table 15.2 - EPROM MANAGER INSTRUCTIONS

Instruction Format Ref. Page

Close label close unit,status 126
create label create unit,f_n,status 133
get_space label get_space unit,space,status 178
get_volume label get_volume unit,d_a,status 183
load label load unit,f_n,status 210
initialize label initialize unit,d_a,status 201
open label open unit,f_n,status 220
read label read unit,d_a,l,status 234
save label save unit,f_n,status 238
write label write unit,d_a,l,status 299

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
ANALOG INPUT/OUTPUT IB-11C001

Page 100 JUNE 1995

 16.0 ANALOG INPUT/OUTPUT

16.1 DESCRIPTION

 MSC-850/32 and MSC-850

 The ACM-850 Analog Control Module provides the MSC-850 system with eight analog input and four analog

output channels. The ACM-850 might be used in applications like a joystick interface, controlling DC motor
drives, or monitoring analog sensors.

 MSC-250

 The MSC-250 has one analog input and one analog output channel.

16.2 CAPABILITIES

 Data range 12 bit conversion over a range of -10 to +10 volts is provided. The data range is -2048 (-10

volts) to +2047 (+10 volts).

 Offse tAny of the 12 channels may be offset. The offset value is added to the real channel value

at the time of conversion. The channel offsets range from -2048 to +2047. The default
value is 0.

 Slew rate An analog rate of change limit may be set for each channel. This rate of change limit is

"calibrated" in bits per 10 milliseconds. The default value is +2047.

16.3 ACM-850 FUNCTIONAL DESCRIPTION

 Analog processing uses a 10 millisecond update cycle in which all analog inputs and outputs are updated. In

the ACM-850 updates are done sequentially by channel number.

 INPUT channels are read-only. Each input channel is read, and the raw voltage signal is added to the

corresponding channel offset value. The result of this addition is compared to the previous reading for that
channel, and if necessary, limited by the slew rate limit currently in effect.

 OUTPUT channels are updated using the same algorithm as INPUT channels. That is, the offset is added

and then the rate of change limit is applied. This limited result is then output.

16.4 POWER ON STATES

 On power up, or after a RESET command from MPDEBUG, the analog I/O channels are in the following

state:

 1. Offsets are set to zero (0)
 2. Slew rate limits are set to 2047
 3. Output channel values are set to zero

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 ANALOG INPUT/OUTPUT

JUNE 1995 Page 101

16.5 ACM-850 INSTRUCTIONS

 Table 16.1 - ACM-850 INSTRUCTIONS

Instruction Format Ref. Page

analog_in label analog_in controller#,ch#,value 109
analog_out label analog_out controller#,ch#,output 110
analog_rt label analog_rt controller#,ch#,value 114
analog_zo label analog_zo controller#,ch#,value 115

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
USER SERIAL PORTS IB-11C001

Page 102 JUNE 1995

 17.0 USER SERIAL PORTS

17.1 DESCRIPTION

 The MSC family of controllers support a number of serial communication ports. The following is a summary

of the ports available for each controller and a short description of each:

 MSC TYPE PORT NUMBER DESCRIPTION

 MSC-800 0 User programmable active/passive current loop port.
 MSC-800 1 RS-232C Executive serial port.
 MSC-800 2 User programmable passive current loop port.

 MSC-850 0 User programmable active/passive current loop port.
 MSC-850 1 RS-232C Executive serial port.
 MSC-850 2 User programmable passive current loop port.

 MSC-250 1 RS-232C/RS-485 Executive serial port.
 MSC-250 2 User programmable passive current loop.
 MSC-250 3 User programmable RS-232C serial port.

 MSC-850/32 0I User programmable active/passive current loop port.
 MSC-850/32 1 RS-232C/RS-485 Executive serial port.
 MSC-850/32 2 User programmable passive current loop.
 MSC-850/32 0R User programmable RS-232C serial port.

 An active current loop port indicates that this port powers the current loop.

 A passive current loop port indicates that the user device will power the current loop.

 The executive port is an RS-232C serial port that only supports the IIS Packet Protocol method of

communication. This port is typically used by the Macroprogram Development System for the loading and
testing of IIS Macroprograms.

 The user programmable ports are suitable for use with a variety of computer displays, hand-held terminals,

strip displays, printers, data entry terminals, etc.

17.2 SERIAL PORT INITIALIZATION

 Before a serial port can be used, it is necessary to tell the MSC controller which port to use and the desired

communication parameters. The port_set instruction is used for this purpose. The format of this instruction
is:

 label port_set port,baud,protocol

 Depending on the MSC controller being used; the port number will be either a 0, 1, 2, 3, 0I or 0R, the baud

rate can be 110, 300, 600, 1200, 2400, 4800, 9600, 19200 or 38400.
 The protocol variable is used to select the proper combination of parity, stop bits and XON/XOFF selection,

according to Table 17.1.

 NOTE: If no parity is chosen, then the MSC assumes 8 bit data words. If parity is chosen, the MSC

assumes 7 bit data words.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 USER SERIAL PORTS

JUNE 1995 Page 103

 Table 17.1 - COMMUNICATION PROTOCOL SELECTION

 Protocol Description
 0 1 stop bit, no parity, XON/XOFF disabled
 1 2 stop bits, no parity, XON/XOFF disabled
 2 1 stop bit, odd parity, XON/XOFF disabled
 3 2 stop bits, odd parity, XON/XOFF disabled
 4 1 stop bit, even parity, XON/XOFF disabled
 5 2 stop bits, even parity, XON/XOFF disabled
 6 RESERVED
 7 RESERVED
 8 1 stop bit, no parity, XON/XOFF enabled
 9 2 stop bits, no parity, XON/XOFF enabled
 10 1 stop bit, odd parity, XON/XOFF enabled
 11 2 stop bits, odd parity, XON/XOFF enabled
 12 1 stop bit, even parity, XON/XOFF enabled
 13 2 stop bits, even parity, XON/XOFF enabled

 Once a port_set instruction has been executed, it remains in effect until another is issued.
 Once a serial port has been initialized, print, print_num, and input instructions may be issued.

17.3 IMPORTANT NOTES REGARDING SERIAL PORTS

 The following factors should be considered when using the MSC serial ports.

 1. Serial port instructions have been implemented so that Macroprogram execution does not need to

be delayed while waiting for characters to be transmitted or received. This leads to the following
considerations:

 a. Print and print_num instructions are queued up to be executed by a separate task.

Several milliseconds may pass between the execution of the instruction and the actual
transmission of characters. The instruction sequence

 let x=10
 print_num 4,0,x
 let x=25

 could result in "25" being sent out the serial port instead of "10".
 It may be necessary to use temporary variables to yield the desired result.

 b. The print queue of the operating system has room for a limited number of entries. It is

possible for the user to overrun this queue by rapidly issuing print commands with no time
delay between them. If your application will issue several print commands in succession, it
may be necessary to implement a software delay between print commands.

 c. The input instruction takes precedence over the print and print_num instructions. The

instruction sequence

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
USER SERIAL PORTS IB-11C001

Page 104 JUNE 1995

 NULL text "" null string
 msg_prompt text "Please Enter Speed: "
 print msg_prompt
 input NULL,4,0,x,in_done

 may result in the input instruction executing before msg_prompt is sent out the port. A

programmed wait of approximately 30 milliseconds between the print and the input
statement may be necessary to achieve the desired result.

 2. There are two special cases of the input command:

 a. The first parameter of the input instruction is the address of a text string which is sent to the

serial port as a prompt. If the prompt string exists, then the current value of the variable
being input is sent to the port immediately following the prompt string. If the prompt string is
a null string, i.e. consists of a single null character, then no prompt is displayed, and the
current value of the variable is NOT sent to the port.

 b. A special form of the input command is provided to handle single character input. In this

form, the prompt string is a null string and the length and width parameters are zero. In this
situation, the decimal value of the next character received via the serial port will be placed
in the input variable.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 USER SERIAL PORTS

JUNE 1995 Page 105

17.4 SERIAL INSTRUCTIONS

 Table 17.2 summarizes instructions used with MSC serial ports.

 Table 17.2 - SERIAL PORT INSTRUCTION SUMMARY

Instruction Format Ref. Page

get_pq_space label get_pq_space space 175
if_char label if_char port#,address_label 189
if_no_char label if_no_char port#,address_label 194
input label input t_l,len,dec,var,u_f 202
port_set label port_set port#,baud,protocol 224
print label print text_label 230
print_num label print_num len,dec,var 231
stop_input label stop_input 282

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 106 JUNE 1995

 18.0 INSTRUCTION REFERENCE

INSTRUCTION DESCRIPTION

analog_in controller#,channel#,variable
analog_out controller#,channel#,value
analog_rt controller#,channel#,value
analog_zo controller#,channel#,value
begin_cam
begin_data
blk_io_in input_flag#,variable
blk_io_out output_flag#,variable
calc_cam_sum controller#,starting element,ending element
calc_unit_cam controller#,distance,# of elements,starting element
cam value,value,etc.
cam_data controller#,data_label,master_scale,data_scale
case num
close unit,status
clr_all_swi
clr_bit bit#,variable
clr_flag user_flag#
clr_hi_scan
clr_local controller#
clr_swi interrupt#
create unit,file_name,status
data value,value,etc.
declare mode
default
digi_comp controller#,gain,integral,damp
dim size
dim controller#,size
disable_hwi controller#
disable_swi
drive_off controller#
drive_on controller#
enable_hwi
enable_swi
end_cam
end_data
end_select
equ constant_expression
exec_profile controller#
exit_select
f_decel controller#
find_mrk_ccw controller#,counts
find_mrk_cw controller#,counts
find_tm_ccw controller#,counts
find_tm_cw controller#,counts
get_act_spd controller#,variable
get_angle controller#,variable
get_cam_cnt controller#,variable
get_cam_end controller#,variable
get_cam_ptr controller#,variable

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 107

get_cam_strt controller#,variable
get_cam_sum controller#,variable
get_com controller#,variable
get_fol_err controller#,variable
get_for_ang controller#,channel#,variable
get_map variable
get_map_stat variable
get_mcf controller#,variable
get_pls_mask controller#,variable
get_pls_out controller#,variable
get_pq_space variable
get_pos controller#,variable
get_pstat controller#,status
get_space unit,space,status
get_status controller#
get_t_mark controller#,state
get_time variable
get_trap_pos controller#,variable
get_volume unit,data_area,status
gosub subroutine_label
goto address_label
if compare1 operator compare2,address_label
if_bit_clr bit#,variable,address_label
if_bit_set bit#,variable,address_label
if_char port#,address_label
if_flag_off user_flag#,address_label
if_flag_on user_flag#,address_label
if_io_off I/O flag#,address_label
if_io_on I/O flag#,address_label
if_no_char port#,address_label
if_stat_off status_flag#,address_label
if_stat_on status_flag#,address_label
if_tmr_off timer_flag#,address_label
if_tmr_on timer_flag#,address_label
incr_com controller#,bits,interrupts
index controller#,distance
initialize unit,data_area,status
input label,length,decimals,variable,user_flag
integer
jog_ccw controller#
jog_cw controller#
l_track_spd controller#,speed
let variable=operand1 opcode operand2
let_byte destination=source
load unit,file_name,status
lock controller#,lock#
master controller#
msc_type system_type
no_op
offset_master controller id#,offset
open unit,file_name,status
over_draw controller#,speed,limit,distance
port_set port#,baud,protocol

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 108 JUNE 1995

position controller#,abs_position
prep_profile controller#,data_label
preset controller#,variable
print text_label
print_num length,decimals,value
rand_int max_number,variable
ratio controller#,ratio
read unit,data_area,length,status
read_offset controller#,variable
restart_at address_label
return_sub
save unit,file_name,status
select variable
set_ac_dc controller#,rate
set_acy_cnt controller#,count
set_bit bit#,variable
set_cam_ptr controller#,value
set_flag user_flag#
set_gl_ccw controller#
set_gl_cw controller#
set_hi_scan
set_home controller#,offset
set_local controller#
set_map variable
set_mcf controller#,variable
set_offset controller#,value
set_ovd_mode controller#,mode
set_pls_ang controller#,on_angle,off_angle,module#
set_pls_cnt controller#,count
set_pls_mask controller#,variable
set_pls_time controller#,time,module#
set_speed controller#,speed
set_swi_mask variable
set_tmr timer_flag#,time
set_trig_cam controller#,master_angle
set_trig_pw controller#,master_angle
set_vgain controller#,vel_gain
stop_input
swi_if_off interrupt#,flag,subroutine_label
swi_if_on interrupt#,flag,subroutine_label
switch_cam controller#,start element, # of elements
sys_fault
sys_return
test_mode controller#
text "ASCII string"
track_spd controller#,speed
trap_pos controller#
turn_off I/O flag#
turn_on I/O flag#
unlock controller#,mode#
vel_ccw controller#
vel_cw controller#
write unit,data_area,length,status

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 109

 analog_in
SYNTAX:
 label analog_in controller#,channel#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 always 4
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 channel# Channel to be used.
 Range: MSC-250 Always 1
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 variable Returned reading.

DESCRIPTION:
 Perform a read from the specified channel of the analog controller. The data is placed in 'variable' after it is

modified based on the channel's current slew rate limit and offset parameters. The modified data will have a
range of -2048 to +2047 which is equivalent to -10 VDC to +10 VDC.

 The value read may be delayed up to 11 milliseconds due to access time through the update loop.

RETURNS:
 Returns the current reading of the specified analog input channel plus any currently set offset value and

limited by current slew rate setting.

SEE:
 analog_out
 analog_rt
 analog_zo

USAGE:
 MSC-250: analog_in
 MSC-850/32: analog_in
 MSC-850: analog_in
 MSC-800: analog_in

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 110 JUNE 1995

 analog_out (ACM-850)
SYNTAX:
 label analog_out controller#,channel#,value

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 4
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 channel# Channel to be used.
 Range: MSC-250 Always 1
 MSC-850/32 9 to 12
 MSC-850 9 to 12
 MSC-800 9 to 12
 value Value to output.
 Range: -2048 to +2047

DESCRIPTION:
 Modify the output value by the specified channel's current slew rate limit and offset parameters and then

write to the specified channel. The specified channel update may be delayed for as long as 11 milliseconds
due to the access time of the control loop.

 Executing the f_decel macro instruction will slew all output channels to 0 volts.

 The modified output data will have a range from -2048 to +2047 which is equivalent to -10 VDC to +10 VDC.

 Outputs are initialized to 0.0 volts on power-up. Outputs will slew to 0.0 volts when program is stopped by

the MSC Toolkit.

RETURNS:
 None.

SEE:
 analog_in
 analog_zo
 analog_rt

USAGE:
 MSC-250: analog_out
 MSC-850/32: analog_out
 MSC-850: analog_out
 MSC-800: analog_out

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 111

 analog_out (ACR-850 or ACE-850 or ACY-850)
SYNTAX:
 label analog_out controller#,channel#,value

PARAMETERS:
 controller# controller id#
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8
 channel# Channel to be used.
 Range: MSC-850/32 Always 1
 MSC-850 Always 1
 value Value to output.
 Range: -2048 to +2047

DESCRIPTION:
 The analog_out instruction can be used with the ACR-850, ACE-850 and ACY-850 controller cards in order

to implement an open loop mode of operation known as "analog mode".

In this mode of operation, the drive unit will be enabled by an external input source. A drive_off instruction
followed by a set_mcf instruction to the ACE-850, ACR-850 or ACY-850 will put that axis controller into
"analog mode". Once in "analog mode", the controller will be in an open loop mode where the analog output
to the drive is not driven by the "position loop", but rather is controlled in the Macroprogram using the
analog_out instruction.

 When used with the ACR-850, ACE-850 or ACY-850 cards, the analog_out instruction will now function in
the same manner as when it is used with the ACM-850 card. A voltage in the range of -10V to +10V, based
on an analog_out value ranging from -2048 to +2047, will be generated by the ACE-850, ACR-850 or ACY-
850 controller cards.

 A subsequent drive_on instruction will put the controller back into the normal "position loop mode" of

operation.

RETURNS:
 None.

SEE:
 set_mcf (ACR-850 or ACE-850 or ACY-850 cards)

USAGE:
 MSC-250: analog_out
 MSC-850/32: analog_out
 MSC-850: analog_out
 MSC-800: analog_out

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 112 JUNE 1995

 analog_out (MSC-250 controller 4)
SYNTAX:
 label analog_out controller#,channel#,value

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 4
 channel# Channel to be used.
 Range: MSC-250 Always 1
 value Value to output.
 Range: -2048 to +2047

DESCRIPTION:
 Modify the output value by the specified channel's current slew rate limit and offset parameters and then

write to the specified channel. The specified channel update may be delayed for as long as 11 milliseconds
due to the access time of the control loop.

 Executing the f_decel macro instruction will slew all output channels to 0 volts.

 The modified output data will have a range from -2048 to +2047 which is equivalent to -10 VDC to +10 VDC.

 Outputs are initialized to 0.0 volts on power-up. Outputs will slew to 0.0 volts when program is stopped by

the MSC Toolkit.

RETURNS:
 None.

SEE:
 analog_in
 analog_zo
 analog_rt

USAGE:
 MSC-250: analog_out
 MSC-850/32: analog_out
 MSC-850: analog_out
 MSC-800: analog_out

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 113

 analog_out (MSC-250 controller 1 and 2)
SYNTAX:
 label analog_out controller#,channel#,value

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 or 2
 channel# Channel to be used.
 Range: MSC-250 Always 1
 value Value to output.
 Range: -2048 to +2047

DESCRIPTION:
 The analog_out instruction can be used with axis controller #1 and #2, in order to implement an open loop

mode of motion control known as "analog mode".

 In this mode of operation, the drive will be enabled by an external input source. A drive_off instruction

followed by a set_mcf instruction (with a value of 1) to the axis controller, will put that axis controller into
"analog mode". Once in "analog mode", the controller will be in an open loop mode. The analog output
voltage from the controller can be driven using the analog_out instruction. The analog_out instruction will
now function in the same manner as it is used with axis controller #4 of the MSC-250, which provides a
single analog output channel. A voltage in the range of -10V to +10V, based on an analog_out value
ranging from -2048 to +2047, will be generated by the axis controller.

 A subsequent set_mcf instruction (with a value of 0) will put the axis controller back into the normal "position

loop mode" of operation.

RETURNS:
 None.

SEE:
 set_mcf (MSC-250 controller 1 and 2)

USAGE:
 MSC-250: analog_out
 MSC-850/32: analog_out
 MSC-850: analog_out
 MSC-800: analog_out

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 114 JUNE 1995

 analog_rt
SYNTAX:
 label analog_rt controller#,channel#,value

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 4
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 channel# Channel to be used.
 Range: MSC-250 1 (for input channel) & 9 (for output channel)
 MSC-850/32 1 to 12
 MSC-850 1 to 12
 MSC-800 1 to 12
 value The slew rate limit.
 Range: 0 to 2047

DESCRIPTION:
 Sets the specified channel slew rate limit in bytes per 10 milliseconds. The slew rate value limits the rate at

which a particular channel (input or output) can change. A slew rate of 1 is equivalent to a rate of change of
4.88 mV per 10 milliseconds.

RETURNS:
 None.

SEE:
 analog_in
 analog_out
 analog_zo

USAGE:
 MSC-250: analog_rt
 MSC-850/32: analog_rt
 MSC-850: analog_rt
 MSC-800: analog_rt

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 115

 analog_zo
SYNTAX:
 label analog_zo controller#,channel#,value

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 4
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 channel# Channel to be used.
 Range: MSC-250 1 (for input channel) & 9 (for output channel)
 MSC-850/32 1 to 12
 MSC-850 1 to 12
 MSC-800 1 to 12
 value Offset value.
 Range: -2048 to +2047

DESCRIPTION:
 Sets the specified channel offset value in 4.88 millivolts per bit. Offset value is cleared on power-up. Outputs

will slew to 0.0 volts when program is stopped by the MSC Toolkit. Zero offset values are cleared on power-
up.

RETURNS:
 None.

SEE:
 analog_in
 analog_out
 analog_rt

USAGE:
 MSC-250: analog_zo
 MSC-850/32: analog_zo
 MSC-850: analog_zo
 MSC-800: analog_zo

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 116 JUNE 1995

 begin_cam
SYNTAX:
 label begin_cam

PARAMETERS:
 None.

DESCRIPTION:
 Signals the start of a cam data area which will contain 8 bit (1 byte) values which represent incremental cam

data. Each begin_cam instruction must have a corresponding end_cam instruction.

 This instruction requires a 'label'.

 EXAMPLE

 cam_array begin_cam
 cam 1,2,3,4,5
 cam 6,6,6,6,6
 cam 5,4,3,2,1
 end_cam

RETURNS:
 None.

SEE:
 cam
 end_cam

USAGE:
 MSC-250: begin_cam
 MSC-850/32: begin_cam
 MSC-850: begin_cam
 MSC-800: begin_cam

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 117

 begin_data
SYNTAX:
 label begin_data

PARAMETERS:
 None.

DESCRIPTION:
 Signals the beginning of a data area which will contain 32-bit (4 byte) values.

 This instruction requires a 'label'.

 EXAMPLE

 profile begin_data
 data 100,200,15*4096
 data 0,200,40*4096
 end_data

RETURNS:
 None.

SEE:
 end_data
 data

USAGE:
 MSC-250: begin_data
 MSC-850/32: begin_data
 MSC-850: begin_data
 MSC-800: begin_data

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 118 JUNE 1995

 blk_io_in
SYNTAX:
 label blk_io_in input_flag#,variable

PARAMETERS:
 input_flag# Starting flag number to read. Must be a multiple of 8 (0,8,16 etc.).
 variable Value of I/O flags to be read.

DESCRIPTION:
 The first eight bits in 'variable' are used to store the state of the I/O modules, starting with 'input_flag#'.

 EXAMPLE

 If 'variable' = 3, the first two inputs are ON.

 If 'variable' = 255, all eight input modules are ON.

RETURN:
 A four byte variable with the LS byte representing the ON and OFF states of the eight I/O read. (Bit ON, I/O

is ON)

SEE:
 blk_io_out

USAGE:
 MSC-250: blk_io_in
 MSC-850/32: blk_io_in
 MSC-850: blk_io_in
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 119

 blk_io_out
SYNTAX:
 label blk_io_out output_flag#,variable

PARAMETERS:
 output_flag# Starting flag number to modify. Must be a multiple of 8 (0,8,16 etc.).
 variable Value of I/O flags to set.

DESCRIPTION:
 The first eight bits in 'variable' are used to set or clear eight outputs, starting with 'output_flag#'.

 EXAMPLE

 If 'variable' = 3, the first two output modules are ON.

 If 'variable' = 255, all eight output modules are ON.

RETURNS:
 None.

SEE:
 blk_io_in

USAGE:
 MSC-250: blk_io_out
 MSC-850/32: blk_io_out
 MSC-850: blk_io_out
 MSC-800: blk_io_out

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 120 JUNE 1995

 calc_cam_sum
SYNTAX:
 label calc_cam_sum controller#,starting element,ending element

PARAMETERS:
 controller# controller id #
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 starting element Element # relative to axis memory zero.
 ending element Element # relative to axis memory zero.

DESCRIPTION:
 Sums the values of cam elements in axis controller memory starting with 'starting element' and including

'ending element'. Starting and ending element numbers are relative to axis controller memory location zero.
 The axis status flag 'calculating' will be ON until calculations are complete.
 The calculated sum can be retrieved using the get_cam_sum instruction.

RETURNS:
 None.

SEE:
 get_cam_sum
 calc_unit_cam

USAGE:
 MSC-250: calc_cam_sum
 MSC-850/32: calc_cam_sum
 MSC-850: calc_cam_sum
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 121

 calc_unit_cam
SYNTAX:
 label calc_unit_cam controller#,distance,# of elements,starting element

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 distance Total distance of the cam in bits.
 # of elements Number of elements which make up the cam.
 starting element The first element of the cam. This element is relative to axis memory location zero.

DESCRIPTION:
 Allows the user to define the shape of a cam and to have the axis controller calculate the cam data array. A

table of co-efficients is transmitted to the axis controller as well as the number of elements and starting
element in the axis controller's 28K data block. The resolution of the table of co-efficients is 128 data points.
The 128 data points used to define the shape of the cam must reside in the last 1K memory area (elements
6750 - 6879) of the axis controller's 28K memory array prior to execution of this instruction.

RETURNS:
 None.

SEE:
 calc_cam_sum
 get_cam_sum

USAGE:
 MSC-250: calc_unit_cam
 MSC-850/32: calc_unit_cam
 MSC-850: calc_unit_cam

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 122 JUNE 1995

 cam
SYNTAX:
 label cam value,value,etc.

PARAMETERS:
 value Incremental cam value.
 Range: -127 to +127

DESCRIPTION:
 Specifies one-byte incremental values for an electronic cam.

 Expressions are allowed. More than one cam value may be contained in a cam statement. By placing the

end_cam statement at the end of the cam table, a cam table terminator (128) is automatically generated.

EXAMPLE

 cam_array begin_cam
 cam 1,2,3,4,5,6,7,8,9,10
 cam 10,10,10,10,10,10,10
 cam 10,9,8,7,6,5,4,3,2,1
 end_cam

RETURNS:
 None.

SEE:
 begin_cam
 end_cam

USAGE:
 MSC-250: am
 MSC-850/32: cam
 MSC-850: cam
 MSC-800: cam

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 123

 cam_data
SYNTAX:
 label cam_data controller#,data_label,master_scale,data_scale

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 data_label Program label of the cam data.
 master_scale Number of times to right shift the master position as it is received by the controller.
 Range: 0 to 12

 Master Scale Factor Cam array advances every
 12 1 full turn
 11 1/2 turn
 10 1/4 turn
 9 1/8 turn
 8 1/16 turn
 7 1/32 turn
 6 1/64 turn
 5 1/128 turn
 4 1/256 turn
 3 1/512 turn
 2 1/1024 turn
 1 1/2048 turn
 0 1/4096 turn

 data_scale Number of times to left shift each data element.
 Range: 0 to 7

DESCRIPTION:
 The cam_data instruction provides the specified controller with its' master scale, data scale and cam data

array location.

 When 'data_label' is dimensioned to reside within macroprogram memory, this instruction will also transfer

the data array associated with 'data_label' to the specified controller.

 When 'data_label' is dimensioned to reside directly on the volatile memory of the axis controller, no transfer

of data will occur. Data can be transferred to the controller memory using the let or let_byte instructions
before and/or after the cam_data instruction has been issued. This instruction then serves as a pointer to
that data array. More than 1 data array can be dimensioned per controller.

RETURNS:
 None.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 124 JUNE 1995

 cam_data (continued)
SEE:
 begin_cam
 cam
 end_cam
 lock
 set_map
 let
 let_byte

USAGE:
 MSC-250:c am_data
 MSC-850/32: cam_data
 MSC-850: cam_data
 MSC-800: cam_data

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 125

 case
SYNTAX
 label case num

PARAMETERS:
 num A integer value.
 Range :-32768 to 32767

DESCRIPTION:
 Used with the select instruction to designate a branch address. Each case value must be unique.

 EXAMPLE

 select num

 case 1
 .
 .
 exit_select

 case 2
 .
 .
 exit_select

 default
 .
 .
 exit_select

 end_select

RETURNS:
 None.

SEE:
 select
 default
 exit_select
 end_select

USAGE:
 MSC-250: case
 MSC-850/32: case
 MSC-850: case
 MSC-800: case

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 126 JUNE 1995

 close
SYNTAX:
 label close unit,status

PARAMETERS:
 unit File identifier.
 Range: 1 to 8
 status Variable containing the result of the operation.

DESCRIPTION:
 This instruction closes a file that was opened via the create or open instructions. This instruction frees the

'unit' for use with another file. If the file was opened via the create instruction, a directory entry is written at
this time.

RETURNS:
 The return variable will be zero if the operation is successful. Non-zero status codes are described in

Section 15.3.2.

SEE:
 write
 open
 read
 create
 initialize
 get_space
 get_volume
 save
 load

USAGE:
 MSC-250: close
 MSC-850/32: close
 MSC-850: close
 MSC-800: close

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 127

 clr_all_swi
SYNTAX:
 label clr_all_swi

PARAMETERS:
 None.

DESCRIPTION:
 Disables and clears all 32 (0 through 31) software interrupts.

RETURNS:
 None.

SEE:
 swi_if_on
 swi_if_off
 clr_swi
 enable_swi
 disable_swi
 set_swi_mask

USAGE:
 MSC-250: clr_all_swi
 MSC-850/32: clr_all_swi
 MSC-850: clr_all_swi
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 128 JUNE 1995

 clr_bit
SYNTAX:
 label clr_bit bit#,variable

PARAMETERS:
 bit# Number of the bit within the 4 byte variable to be cleared to off (logic 0).
 Range: 0 to 31
 variable The 4 byte area in memory affected by this instruction.

DESCRIPTION:
 The specified bit will be cleared (logic 0). If that bit has been previously cleared, it will remain cleared. If that

bit was previously set (logic 1), it will now be cleared.

 This instruction has no effect on the remaining bits of this 4-byte variable.

 This instruction will be ignored if 'bit#' is outside the range of 0 to 31.

RETURNS:
 None.

SEE:
 set_bit

USAGE:
 MSC-250: clr_bit
 MSC-850/32: clr_bit
 MSC-850: clr_bit
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 129

 clr_flag
SYNTAX:
 label clr_flag user_flag#

PARAMETERS:
 user_flag# Number of the user flag to be cleared.
 Range: 208 to 255

DESCRIPTION:
 Clears the specified user flag.

RETURNS:
 None.

SEE:
 set_flag

USAGE:
 MSC-250: clr_flag
 MSC-850/32: clr_flag
 MSC-850: clr_flag
 MSC-800: clr_flag

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 130 JUNE 1995

 clr_hi_scan
SYNTAX:
 label clr_hi_scan

PARAMETERS:
 None.

DESCRIPTION:
 Clears a previously executed 'set_hi_scan' instruction.
 Sets the I/O Expander scan rate to every 12msec per expander.
 i.e.(1 expander - scan rate is every 12msec
 2 expanders - scan rate is every 24msec
 3 expanders - scan rate is every 36msec
 4 expanders - scan rate is every 48msec)

RETURN:
 None.

SEE:
 set_hi_scan

USAGE:
 MSC-250: N/A
 MSC-850/32: clr_hi_scan
 MSC-850: N/A
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 131

 clr_local
SYNTAX:
 label clr_local controller#

PARAMETERS:
 controller# controller id #
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9

DESCRIPTION:
 Clears the current local zero position and causes the specified controller card to use the current global zero

as the absolute zero position.

RETURNS:
 None.

SEE:
 set_local

USAGE:
 MSC-250: clr_local
 MSC-850/32: clr_local
 MSC-850: clr_local
 MSC-800: clr_local

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 132 JUNE 1995

 clr_swi
SYNTAX:
 label clr_swi interrupt#

PARAMETERS:
 interrupt# Interrupt number.
 Range: 0 to 31

DESCRIPTION:
 Purges a previously defined software interrupt.

RETURNS:
 None.

SEE:
 clr_all_swi
 enable_swi
 disable_swi
 swi_if_on
 swi_if_off
 set_swi_mask

USAGE:
 MSC-250: clr_swi
 MSC-850/32: clr_swi
 MSC-850: clr_swi
 MSC-800: clr_swi

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 133

 create
SYNTAX:
 label create unit,file_name,status

PARAMETERS:
 unit File identifier.
 Range: 1 to 8
 file_name Label of the text statement containing the file name.
 status Variable containing the result of the operation.

DESCRIPTION:
 This instruction creates a new file on the EPROM and prepares to write data in the file. The MSC will

associate the file name with the unit identifier and will set the file record pointer to the beginning of the file.

 Only 1 file may be written to at one time.

RETURNS:
 The return variable will be zero if the operation is successful. Non-zero status codes are described in

Section 15.3.2.

SEE:
 open
 close
 write
 initialize
 get_space
 get_volume
 load
 save

USAGE:
 MSC-250: create
 MSC-850/32: create
 MSC-850: create
 MSC-800: create

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 134 JUNE 1995

 data
SYNTAX:
 label data value,value,etc.

PARAMETERS:
 value 32-bit constant
 Range :-2,147,483,648 to +2,147,483,647

DESCRIPTION:
 Specifies 32-bit values. More than 1 value may be contained in a statement.

 EXAMPLE

 profile begin_data
 data 200,100,4096
 data 0,100,4096
 end_data

RETURNS:
 None.

SEE:
 begin_data
 end_data

USAGE:
 MSC-250: data
 MSC-850/32: data
 MSC-850: data
 MSC-800: data

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 135

 declare
SYNTAX:
 label declare mode

PARAMETERS:
 mode This entry can be only ON or OFF.

DESCRIPTION:
 This is a directive to the MSC Toolkit Compiler.

 If 'mode' is ON, the Compiler will expect that all variables, text strings, equates etc. will be declared by the

programmer. They will not be automatically created by the Compiler.

 If 'mode' is OFF, the Compiler will automatically create data space for those variables used but not declared.

 The Compiler will assume that 'mode' is OFF if this instruction is not included in the macroprogram.

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: declare
 MSC-850/32: declare
 MSC-850: declare
 MSC-800: declare

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 136 JUNE 1995

 default
SYNTAX:
 label default

PARAMETERS:
 None.

DESCRIPTION:
 Used with the select instruction to designate a group of statements which are executed if none of the case

statements produce a match.

 EXAMPLE

 select x
 case 1
 .
 .
 exit_select

 case 2
 .
 .
 exit_select

 default
 exit_select

 end_select

RETURNS:
 None.

SEE:
 select
 end_select
 exit_select
 case

USAGE:
 MSC-250: default
 MSC-850/32: default
 MSC-850: default
 MSC-800: default

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 137

 digi_comp
SYNTAX:
 label digi_comp controller#,gain,integral,damp

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 gain Range: 1 to 255
 integral Range: 0 to 255
 damp Range: -128 to +127

DESCRIPTION:
 Set digital compensation values.

 Default values for these parameters are:

 gain = 16
 integral = 0
 damp = 0

 It is not necessary to use this instruction if you are using conventional compensation methods.

RETURNS:
 None.

SEE:
set_vgain

USAGE:
 MSC-250: digi_comp
 MSC-850/32: digi_comp
 MSC-850: digi_comp
 MSC-800: digi_comp

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 138 JUNE 1995

 dim
SYNTAX:
 label dim size
 or
 label dim controller#,size

PARAMETERS:
 size Number of 32-bit storage locations to reserve.

 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8

DESCRIPTION:
 This statement allocates the indicated number of storage locations to the name 'label'. In the MSC-850 and

MSC-250, this instruction may be used to allocate all or part of the 28K of controller memory.

 This instruction requires a 'label'.

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: dim
 MSC-850/32: dim
 MSC-850: dim
 MSC-800: dim

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 139

 disable_hwi
SYNTAX:
 label disable_hwi controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8

DESCRIPTION:
 Terminates scanning of the hardware interrupt signal in the specified axis controller. Also clears the

appropriate HWI ARMED status in the controller.

RETURNS:
 None.

SEE:
 enable_hwi

USAGE:
 MSC-250: disable_hwi
 MSC-850/32: disable_hwi
 MSC-850: disable_hwi
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 140 JUNE 1995

 disable_swi
SYNTAX:
 label disable_swi

PARAMETERS:
 None.

DESCRIPTION:
 Disables software interrupt processing.

RETURNS:
 None.

SEE:
 enable_swi
 swi_if_on
 swi_if_off
 clr_swi
 clr_all_swi
 set_swi_mask

USAGE:
 MSC-250: disable_swi
 MSC-850/32: disable_swi
 MSC-850: disable_swi
 MSC-800: swi_off

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 142 JUNE 1995

 drive_on
SYNTAX:
 label drive_on controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8

DESCRIPTION:
 Reset all motor fault conditions and turns on the servo amplifier. All controllers must be enabled at least

once prior to executing any motion instructions. A controller initializes to "reset mode" on power-up.

 Regarding MSC-850 and MSC-850/32 systems, if an axis controller card is currently in "analog mode" when

a drive_on instruction is executed, "analog mode" will be disabled and "position loop mode" will be enabled.

RETURNS:
 None.

SEE:
 drive_off, set_mcf
 set_mcf (ACR-850 or ACE-850 or ACY-850 cards)
 set_mcf (MSC-250 controller 1 and 2)

USAGE:
 MSC-250: drive_on
 MSC-850/32: drive_on
 MSC-850: drive_on
 MSC-800: enable

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 143

 enable_hwi
SYNTAX:
 label enable_hwi

PARAMETERS:
The instruction immediately following enable_hwi.

DESCRIPTION:
 This instruction, when used with supported 'hardware interrupt' instructions, will enable scanning at the

specified motion controller for the 'hardware interrupt' signal to be activated.

 When the 'hardware interrupt' signal is detected, the specified instruction will immediately be executed. The

MSC Toolkit Compiler will associate the instruction that follows 'enable_hwi' as the instruction to be
executed.

 The following instructions are currently supported:

 enable_hwi
 over_draw controller id#,speed,limit,distance

 enable_hwi
 trap_pos controller id#

 enable_hwi
 ratio controller id#,ratio

 enable_hwi
 lock controller id#,lock type

 enable_hwi
 position controller id#,abs_position

 enable_hwi
 index controller id#,distance

 enable_hwi
 exec_profile controller id#

 enable_hwi
 f_decel controller id#

 The HWI ARMED status in the controller will be on after this instruction has been executed.

RETURNS:
 None.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 144 JUNE 1995

 enable_hwi (continued)
SEE:
 disable_hwi
 over_draw
 trap_pos
 ratio
 position
 index
 lock
 exec_profile
 f_decel

USAGE:
 MSC-250: enable_hwi
 MSC-850/32: enable_hwi
 MSC-850: enable_hwi
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 145

 enable_swi
SYNTAX:
 label enable_swi

PARAMETERS:
 None.

DESCRIPTION:
 Enables software interrupt processing.

RETURNS:
 None.

SEE:
 disable_swi
 swi_if_on
 swi_if_off
 clr_swi
 clr_all_swi
 set_swi_mask

USAGE:
 MSC-250: enable_swi
 MSC-850/32: enable_swi
 MSC-850: enable_swi
 MSC-800: swi_on

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 146 JUNE 1995

 end_cam
SYNTAX:
 label end_cam

PARAMETERS:
 None.

DESCRIPTION:
 Signals the end of a data area containing incremental cam data. Each begin_cam instruction must have a

corresponding end_cam instruction.

 Automatically places an end of cam value (80 hex) in the cam array.

EXAMPLE

 cam_array begin_cam
 cam 1,2,3,4,5
 cam 6,6,6,6,6
 cam 5,4,3,2,1
 end_cam

RETURNS:
 None.

SEE:
 begin_cam
 cam

USAGE:
 MSC-250: end_cam
 MSC-850/32: end_cam
 MSC-850: end_cam
 MSC-800: end_cam

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 147

 end_data
SYNTAX:
 label end_data

PARAMETERS:
 None.

DESCRIPTION:
 Signals the end of a data array area. Each begin_data instruction must have a corresponding end_data

instruction.

EXAMPLE

 profile begin_data
 data 100,200,4096
 data 0,200,4096
 end_data

RETURNS:
 None.

SEE:
 begin_data
 data

USAGE:
 MSC-250: end_data
 MSC-850/32: end_data
 MSC-850: end_data
 MSC-800: end_data

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 148 JUNE 1995

 end_select
SYNTAX:
 label end_select

PARAMETERS:
 None.

DESCRIPTION:
 Used to end a group of select/case statements. Each select statement must have a corresponding

end_select statement.

RETURNS:
 None.

SEE:
 select
 case
 exit_select
 default

USAGE:
 MSC-250: end_select
 MSC-850/32: end_select
 MSC-850: end_select
 MSC-800: end_select

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 149

 equ
SYNTAX:
 label equ constant_expression

PARAMETERS:
 constant_expression A 32-bit number or expression.

DESCRIPTION:
 The equ instruction assigns a symbol to a number or mathematic expression.

 The MSC Toolkit Compiler replaces each occurrence of 'label' with the assigned number. Fractional

numbers are allowed in expressions but any resulting fraction will be truncated.

 This instruction requires a 'label'.

RETURNS:
 None.

SEE:
 text
 integer

USAGE:
 MSC-250: equ
 MSC-850/32: equ
 MSC-850: equ
 MSC-800: equ

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 150 JUNE 1995

 exec_profile
SYNTAX:
 label exec_profile controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9

DESCRIPTION:
 Executes a previously defined piece-wise profile. While the profile is executing, the get_pstat instruction

may be used to determine the profile segment currently running.

 This instruction sets the controller status flags AXIS BUSY and MOTOR INDEXING. These flags remain set

until a f_decel instruction causes the motor to reach zero speed or the profile is completed.

 This instruction will be ignored if no valid data has been transmitted to the controller via the prep_profile

instruction.

 This instruction will be ignored if the controller has not received a drive_on instruction, or if the controller is

busy executing a motion instruction. If the instruction cannot be executed, the axis status flag COMMAND
INVALID IN THIS STATE will be set. This flag will automatically be cleared by the controller at the next
communication between the main processor and the axis controller. In the MSC-850 and the MSC-800, this
occurs automatically every 100 milliseconds even if no Macroprogram instruction directs communication to
occur.

RETURNS:
 None.

SEE:
 prep_profile
 get_pstat

USAGE:
 MSC-250: exec_profile
 MSC-850/32: exec_profile
 MSC-850: exec_profile
 MSC-800: exec_profile

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 151

 exit_select
SYNTAX:
 label exit_select

PARAMETERS:
 None.

DESCRIPTION:
 Used to end a group of statements being executed within a particular case statement. Causes program

control to transfer to the statement following the end_select statement. Each case statement must have a
corresponding exit_select statement.

 EXAMPLE
 select
 case 1
 .
 exit_select

 case 2
 .
 exit_select

 default
 .
 exit_select

 end_select

RETURNS:
 None.

SEE:
 select
 case
 end_select
 default

USAGE:
 MSC-250: exit_select
 MSC-850/32: exit_select
 MSC-850: exit_select
 MSC-800: exit_select

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 152 JUNE 1995

 f_decel
SYNTAX:
 label f_decel controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9

DESCRIPTION:
 The specified controller will be commanded to stop its motion at the last set accel/decel rate. If its motion is

currently stopped, f_decel has no effect.

 The controller status flag FORCE DECEL IN PROGRESS is set by this instruction. It remains set until the

controller's motion reaches zero speed.

 A mode zero unlock will occur if the controller is currently in a master/slave lock.

 If this instruction is directed to an analog controller (i.e. ACM-850), all outputs will slew to zero.

 A f_decel instruction is automatically sent to all controller cards whenever a sys_fault or a sys_return

instruction is executed.

RETURNS:
 None.

SEE:
 unlock

USAGE:
 MSC-250: f_decel
 MSC-850/32: f_decel
 MSC-850: f_decel
 MSC-800: f_decel

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 153

 find_mrk_ccw
SYNTAX:
 label find_mrk_ccw controller#,counts

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 Counts The line count of the encoder multiplied by 4.
 Range: 2048, 4096, 8192 or 16384 counts only.

DESCRIPTION:
 The ACE-850 power-up routine sets the ACE-850 to a local mode. This means that the encoder is initially

sitting at a 0.0 reference location. This instruction is used to change the 0.0 reference location to be at the
marker.

 Executing this instruction causes the motor shaft to jog in the counter-clockwise direction (at the previously

defined accel/decel rate and speed) until the encoder marker is detected.

 At the moment the marker is detected:
 1) the internal turn/position counters will be zeroed
 2) the motor will do a forced deceleration to zero speed

 At the completion of the deceleration:
 1) the 'bit loss/auto correction' feature will be enabled
 2) the position counter is now relative to the marker (i.e. a position to 0.0 will move the motor to the

marker)

 Before using this instruction, the programmer should do the following:

1) turn the motor/drive unit on using the drive_on instruction
 2) set the accel/decel rate, using the set_ac_dc instruction
 3) set the motor speed, using the set_speed instruction

NOTE:
 This instruction is ONLY valid for line counts of 512, 1024, 2048 and 4096.

RETURNS:
 None.

SEE:
 find_mrk_cw

USAGE:
 MSC-250: find_mrk_ccw
 MSC-850/32: find_mrk_ccw
 MSC-850: find_mrk_ccw
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 154 JUNE 1995

 find_mrk_cw
SYNTAX:
 label find_mrk_cw controller#,counts

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 counts The line count of the encoder multiplied by 4.
 Range: 2048, 4096, 8192 or 16384 counts only.

DESCRIPTION:
 The ACE-850 power-up routine sets the ACE-850 to a local mode. This means that the encoder is initially

sitting at a 0.0 reference location. This instruction is used to change the 0.0 reference location to be at the
marker.

 Executing this instruction causes the motor shaft to jog in the clock-wise direction (at the previously defined

accel/decel rate and speed) until the encoder marker is detected.

 At the moment the marker is detected:
 1) the internal turn/position counters will be zeroed
 2) the motor will do a forced deceleration to zero speed

 At the completion of the deceleration:
 1) the 'bit loss/auto correction' feature will be enabled
 2) the position counter is now relative to the marker
 (i.e. a position to 0.0 will move the motor to the marker)

 Before using this instruction, the programmer should do the following:
 1) turn the motor/drive unit on using the drive_on instruction
 2) set the accel/decel rate, using the set_ac_dc instruction
 3) set the motor speed, using the set_speed instruction

NOTE:
 This instruction is ONLY valid for line counts of 512, 1024, 2048 and 4096.

RETURNS:
 None.

SEE:
 find_mrk_ccw

USAGE:
 MSC-250: find_mrk_cw
 MSC-850/32: find_mrk_cw
 MSC-850: find_mrk_cw
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 155

 find_tm_ccw
SYNTAX:
 label find_tm_ccw controller#,counts

PARAMETERS:
 controller# controller id#
 Range: MSC-2501 to 2
 MSC-850/321 to 8
MSC-8501 to 8
 counts The line count of the encoder multiplied by 4.
 Range: 2048, 4096, 8192 or 16384 counts only.

DESCRIPTION:
 The ACE-850 power-up routine sets the ACE-850 to a local mode. This means that the encoder is initially

sitting at a 0.0 reference location. This instruction is used to change the 0.0 reference location to be at the
marker. This instruction is used for markers which stay on for 180 degrees.

 Executing this instruction causes the motor shaft to jog in the counter-clockwise direction (at the previously

defined accel/decel rate and speed) until the encoder marker is detected.

 At the moment the marker is detected:
 1) the internal turn/position counters will be zeroed
 2) the motor will do a forced deceleration to zero speed

At the completion of the deceleration:
1) the 'bit loss/auto correction' feature will be enabled

 2) the position counter is now relative to the marker
 (i.e. a position to 0.0 will move the motor to the marker)

 Before using this instruction, the programmer should do the following:
 1) turn the motor/drive unit on using the drive_on instruction
 2) set the accel/decel rate, using the set_ac_dc instruction
 3) set the motor speed, using the set_speed instruction

NOTE:
 This instruction is ONLY valid for line counts of 512, 1024, 2048 and 4096.

RETURNS:
 None.

SEE:
 find_tm_cw

USAGE:
 MSC-250: find_tm_ccw
 MSC-850/32: find_tm_ccw
 MSC-850: find_tm_ccw
 MSC-800 :N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 156 JUNE 1995

 find_tm_cw
SYNTAX:
 label find_tm_cw controller#,counts

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 counts The line count of the encoder multiplied by 4.
 Range: 2048, 4096, 8192 or 16384 counts only.

DESCRIPTION:
 The ACE-850 power-up routine sets the ACE-850 to a local mode. This means that the encoder is initially

sitting at a 0.0 reference location. This instruction is used to change the 0.0 reference location to be at the
marker. This instruction is used for markers which stay on for 180 degrees.

 Executing this instruction causes the motor shaft to jog in the clock-wise direction (at the previously defined

accel/decel rate and speed) until the encoder marker is detected.

 At the moment the marker is detected:
 1) the internal counters will be set to -(counts/2)
 (i.e. the actual 0.00 point is 180 degrees clockwise away, this insures that the instructions

find_tm_cw and find_tm_ccw find the same 0.00 reference location)
 2) the motor will do a forced deceleration to zero speed

 At the completion of the deceleration:
 1) the 'bit loss/auto correction' feature will be enabled
 2) the position counter is now relative to the marker
 (i.e. a position to 0.0 will move the motor to the marker)

 Before using this instruction, the programmer should do the following:
 1) turn the motor/drive unit on using the drive_on instruction
 2) set the accel/decel rate, using the set_ac_dc instruction
 3) set the motor speed, using the set_speed instruction

NOTE:
 This instruction is ONLY valid for line counts of 512, 1024, 2048 and 4096.

RETURNS:
 None.

SEE:
 find_tm_ccw

USAGE:
 MSC-250: find_tm_cw
 MSC-850/32: find_tm_cw
 MSC-850: find_tm_cw
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 157

 get_act_spd
SYNTAX:
 label get_act_spd controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable Current motion controller speed in RPM.
 (4096 bits per revolution are assumed)

DESCRIPTION:
 Returns the actual speed at the motor shaft of the specified motion controller (in RPM) into 'variable'.

RETURNS:
 Actual axis speed.

SEE:
 No related instructions.

USAGE:
 MSC-250: get_act_spd
 MSC-850/32: get_act_spd
 MSC-850: get_act_spd
 MSC-800: get_mspd (get master axis speed)

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 158 JUNE 1995

 get_angle
SYNTAX:
 label get_angle controller#,variable

PARAMETERS:
 controller# controller ID #
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable The current angle of the master axis driving this controller in master/slave lock.

DESCRIPTION:
 Returns the current angle of the master axis driving this axis controller in master/slave lock.

RETURNS:
 master angle

SEE:
 get_for_ang

USAGE:
 MSC-250: get_angle
 MSC-850/32: get_angle
 MSC-850: get_angle
 MSC-800 :N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 159

 get_angle (MSC-850/HPL-850)
SYNTAX:
 label get_angle controller#,variable

PARAMETERS:
 controller# controller ID #
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable The value of the HPL-850 accumulator.

DESCRIPTION:
 Returns the current HPL-850 accumulator.

RETURNS:
 The current HPL-850 accumulator value is placed into 'variable'.

SEE:
 preset

USAGE:
 MSC-250: N/A
 MSC-850/32: get_angle
 MSC-850: get_angle
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 160 JUNE 1995

 get_cam_cnt
SYNTAX:
 label get_cam_cnt controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable The returned cam counter.

DESCRIPTION:
 Returns the number of executions of the currently executing cam. The cam counter is incremented when the

cam pointer rolls over from last element to first element, and is decremented each time the cam pointer rolls
over from first element to last element.

RETURNS:
 The number of times this cam has been executed. This value is signed 32-bit number.

SEE:
 No related instructions.

USAGE:
 MSC-250: get_cam_cnt
 MSC-850/32: get_cam_cnt
 MSC-850: get_cam_cnt
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 161

 get_cam_end
SYNTAX:
 label get_cam_end controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable The last element in the current cam.

DESCRIPTION:
 Returns the ending location of the cam currently being executed, relative to the axis card memory location

zero.

RETURNS:
 Returns the element number of the last value in the current cam.

SEE:
 switch_cam
 get_cam_strt
 get_cam_count

USAGE:
 MSC-250: get_cam_end
 MSC-850/32: get_cam_end
 MSC-850: get_cam_end
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 162 JUNE 1995

 get_cam_ptr
SYNTAX:
 label get_cam_ptr controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 variable Returned cam array member.

DESCRIPTION:
 Stores the cam array element relative to the beginning of the current cam into a variable.

RETURNS:
 The number of the current cam element.

SEE:
 set_cam_ptr

USAGE:
 MSC-250: get_cam_ptr
 MSC-850/32: get_cam_ptr
 MSC-850: get_cam_ptr
 MSC-800 :store_frm

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 163

 get_cam_strt
SYNTAX:
 label get_cam_strt controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable The first element in the current cam.

DESCRIPTION:
 Retrieves the starting location of the cam currently executed, relative to axis memory location zero.

RETURNS:
 The first element of the current cam relative to axis controller memory zero.

SEE:
 get_cam_end
 get_cam_count

USAGE:
 MSC-250: get_cam_strt
 MSC-850/32: get_cam_strt
 MSC-850: get_cam_strt
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 164 JUNE 1995

 get_cam_sum
SYNTAX:
 label get_cam_sum controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable Returned sum of cam elements.

DESCRIPTION:
 Returns the result of the last calc_cam_sum instruction in 'variable'. This instruction may be executed after

the instruction 'calc_cam_sum' has been executed, and the axis status flag 'CALCULATING' has gone from
ON to OFF.

RETURNS:
 The calculated cam sum.

SEE:
 calc_cam_sum

USAGE:
 MSC-250: get_cam_sum
 MSC-850/32: get_cam_sum
 MSC-850: get_cam_sum
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 165

 get_com
SYNTAX:
 label get_com controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable Returned position.

DESCRIPTION:
 Gets the absolute commanded motor position of the specified controller and places this position in 'variable'.

 In the MSC-850/32, MSC-850 and MSC-800 controllers, position is a signed 24 bit number. In the MSC-
250, position is a signed 32-bit number.

RETURNS:
 Axis controllers commanded position.

SEE:
 get_pos

USAGE:
 MSC-250: get_com
 MSC-850/32: get_com
 MSC-850: get_com
 MSC-800: store_com

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 166 JUNE 1995

 get_fol_err
SYNTAX:
 label get_fol_err controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable The current following error angle.

DESCRIPTION:
 Returns the current following error angle. This value is the difference between the current commanded

position and the current actual position and is represented as a signed value with a normal range of " 4095.
 Altering the digital gain to less than 16 may result in a value, which exceeds normal range. CCW will return
negative values, and CW motion will return positive values.

RETURNS:
 Returns the current difference between the axis commanded and actual positions.

SEE:
 No related instructions.

USAGE:
 MSC-250: get_fol_err
 MSC-850/32: get_fol_err
 MSC-850: get_fol_err
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 167

 get_for_ang
SYNTAX:
 label get_for_ang controller#,channel#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 channel# Range: MSC-250 Always 1
 MSC-850/32 1 to 2
 MSC-850 1 to 2
 variable The current fiber optic angle.

DESCRIPTION:
 Returns the current fiber optic angle for the specified channel.

RETURNS:
 Fiber optic angle. This value is a signed 16-bit number with the range -32768 to +32767.

SEE:
 No related instructions.

USAGE:
 MSC-250: get_for_ang
 MSC-850/32: get_for_ang
 MSC-850:g et_for_ang
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 168 JUNE 1995

 get_map
SYNTAX:
 label get_map variable

PARAMETERS:
 variable The currently defined map value.

DESCRIPTION:
 Queries the current definition of the master angle bus communication configuration defined by the last

set_map instruction.

RETURNS:
 Returns the current master angle bus configuration. The variable may be interpreted as follows:

 MSC-850 MASTER ANGLE BUS CONFIGURATION CHART

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 170 JUNE 1995

 get_map_stat
SYNTAX:
 label get_map_stat variable

PARAMETERS:
 variable Returned 'map' status.

DESCRIPTION:
 'map' is an acronym for Master Angle Passing.

 Returns the status of the last set_map instruction.

 Status Description

 0 Valid 'map' value.
 1 More than 1 transmitter on Bus 'A'.
 2 More than 1 transmitter on Bus 'B'.

RETURNS:
 Status of last set_map instruction executed.

SEE:
 set_map

USAGE:
 MSC-250: get_map_stat
 MSC-850/32: get_map_stat
 MSC-850: get_map_stat
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 171

 get_mcf
SYNTAX:
 label get_mcf controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable The currently defined 'mcf' value.

DESCRIPTION:
 'mcf' is an acronym for Multi Function Controller.

 Returns the current definition of the specified multi function controller card, as defined by the last valid

set_mcf instruction.

 This 4-byte variable is used as shown in the following diagrams:

 MCF-850 MULTI-FUNCTION CONFIGURATION

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 172 JUNE 1995

 get_mcf (continued)

SEE:
 set_mcf

USAGE:
 MSC-250: get_mcf
 MSC-850/32: get_mcf
 MSC-850: get_mcf
 MSC-800: N/A

 MSC-250 MULTI-FUNCTION CONFIGURATION

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 173

 get_pls_mask
SYNTAX:
 label get_pls_mask controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable The currently defined 'pls' mask value.

DESCRIPTION:
 'pls' is an acronym for Programmable Limit Switch.

 Returns the currently defined 'pls' mask value into 'variable', as defined by the last set_pls_mask

instruction.

 Only the low order 3 bytes are used.

RETURNS:
 The currently defined pls mask.

SEE:
 set_pls_mask

USAGE:
 MSC-250: get_pls_mask
 MSC-850/32: get_pls_mask
 MSC-850: get_pls_mask
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 174 JUNE 1995

 get_pls_out
SYNTAX:
 label get_pls_out controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable The current state of the 'pls' output modules.

DESCRIPTION:
 'pls' is an acronym for Programmable Limit Switch.

 Returns the current state of the 'pls' output modules into 'variable'. A bit on (logic 1) indicates that the

associated module is 'on'. A bit off (logic 0) indicates that the associated output is 'off'.

 Only the low order 3 bytes are used.

 Bits 0 to 15 are the hardware 'pls' flags.

 Bits 16 to 23 are the internal 'pls' flags.

RETURNS:
 Current state of PLS outputs.

SEE:
 set_pls_ang
 set_pls_mask

USAGE:
 MSC-250: get_pls_out
 MSC-850/32: get_pls_out
 MSC-850: get_pls_out
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 175

 get_pq_space
SYNTAX:
 label get_pq_space variable

PARAMETERS:
 variable Return variable.

DESCRIPTION:
 Returns the number of bytes available in the output buffer. There is one buffer for all ports. If another

'port_set' instruction is executed, the previous prints still get executed. The size of the buffer is 3060 bytes.
Any 'prints' executed which exceed the size of the buffer are lost.

RETURNS:
 Number of available bytes in the output buffer.

SEE:
 port_set

USAGE:
 MSC-250: get_pq_space
 MSC-850/32: get_pq_space
 MSC-850: N/A
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 176 JUNE 1995

 get_pos
SYNTAX:
 label get_pos controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 variable Returned position.

DESCRIPTION:
 Gets the absolute actual motor position of the specified controller and places this position in 'variable'. The

position is a signed 24-bit value.

RETURNS:
 The current actual motor position.

SEE:
 get_com

USAGE:
 MSC-250: get_pos
 MSC-850/32: get_pos
 MSC-850: get_pos
 MSC-800: store_pos

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 177

 get_pstat
SYNTAX:
 label get_pstat controller#,status

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9
 status Returned status.

DESCRIPTION:
 Returns the calculation or running status of a Piecewise profile.

 A. After a profile calculation has been performed, get_pstat is used to check the results of the

calculations. If there were no errors, 'status' is zero. If any part of the calculations failed, then
get_pstat will return a calculation error code and the number of the profile segment that caused the
error as follows:

 Least significant byte: profile segment number in error
 Next significant byte: error code (see below)

 B. While a profile is executing, get_pstat returns the number of the profile segment that is being

executed.

RETURNS:
 Error Codes:

 Code Meaning
 ------ ----------
 1 Attempt to change profile direction.
 3 Insufficient distance for specified speed and/or acceleration.

 The following example represents a 'status' where the profile segment number in error is 10 and the error

code for that segment is 3:

 status: 778 (decimal)status:0000 030A (hexadecimal)

SEE:
prep_profile
 exec_profile

USAGE:
 MSC-250: get_pstat
 MSC-850/32: get_pstat
 MSC-850: get_pstat
 MSC-800: get_pstat

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 178 JUNE 1995

 get_space
SYNTAX:
 label get_space unit,space,status

PARAMETERS:
 unit File identifier.
 Range: 1 to 8
 space Variable containing the number of remaining bytes.
 status Variable containing the result of the operation.

DESCRIPTION:
 This instruction returns to 'space' the number of remaining bytes (characters) in the EPROM.

RETURNS:
 The return variable will be zero if the operation is successful. Non-zero status codes are described in

Section 15.3.2.

SEE:
 open
 close
 write
 create
 initialize
 read
 get_volume
 load
 save

USAGE:
 MSC-250: get_space
 MSC-850/32: get_space
 MSC-850: get_space
 MSC-800: get_space

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 179

 get_status
SYNTAX:
 label get_status controller#

PARAMETERS:
 controller# controller ID #
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8

DESCRIPTION:
 Updates the axis status flags for the specified controller. This insures the axis status flags contain the most

current information.

 In the MSC-850/32, MSC-850, and MSC-800, if this instruction is not used, the axis status flags are

automatically updated every 100 milliseconds.

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: N/A
 MSC-850/32: get_status
 MSC-850: get_status
 MSC_800: get_status

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 180 JUNE 1995

 get_t_mark
SYNTAX:
 label get_t_mark controller#,state

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 state The current marker state.
 Range: 0 or 1

DESCRIPTION:
 The value of 'state' will be either one (1) if the marker is on or zero (0) if the marker is off.

RETURNS:
 The current state of the encoder marker.

SEE:
 find_tm_cw
 find_tm_ccw
 find_mrk_cw
 find_mrk_ccw

USAGE:
 MSC-250: get_t_mark
 MSC-850/32: get_t_mark
 MSC-850: get_t_mark
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 181

 get_time
SYNTAX:
 label get_time variable

PARAMETERS:
 variable Returned time.

DESCRIPTION:
 Return the current system time in 'variable'. The 'variable' is an unsigned 32-bit data value. The resolution

of the timer is 5 milliseconds.

 The timer will reset to 0 during system power up.

RETURNS:
 Current system time from power-up.

SEE:
 set_tmr

USAGE:
 MSC-250: get_time
 MSC-850/32: get_time
 MSC-850: get_time
 MSC-800 :store_time

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 182 JUNE 1995

 get_trap_pos
SYNTAX:
 label get_trap_pos controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable Returned position.
 Range: MSC-850/32 (-2048*4096) to (+2048*4096)-1 bits
 MSC-850 (-2048*4096) to (+2048*4096)-1 bits
 MSC-250 (-524287*4096) to (+524287*4096)-1 bits

DESCRIPTION:
 Returns the actual motor position of the specified controller (saved by executing the last trap_pos

instruction) into 'variable'.

RETURNS:
 Returns last trapped position.

SEE:
 trap_pos
 enable_hwi

USAGE:
 MSC-250: get_trap_pos
 MSC-850/32: get_trap_pos
 MSC-850: get_trap_pos
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 183

 get_volume
SYNTAX:
 label get_volume unit,data_area,status

PARAMETERS:
 unit File identifier.
 Range: 1 to 8
 data_area Label of a 'text' instruction.
 status Variable containing the result of the operation.

DESCRIPTION:
 This instruction reads the EPROM label area and places this volume name in the 'data_area'. The volume

name can be from 1 to 15 characters.

RETURNS:
 The return variable will be zero if the operation is successful. Non-zero status codes are described in

Section 15.3.2.

SEE:
 None.

USAGE:
 MSC-250: get_volume
 MSC-850/32: get_volume
 MSC-850: get_volume
 MSC-800: get_volume

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 184 JUNE 1995

 gosub
SYNTAX:
 label gosub subroutine_label

PARAMETERS:
 subroutine_label Program label of the subroutine.

DESCRIPTION:
 Branches to the specified address. When a return_sub instruction is executed the program branches to the

instruction following the gosub instruction.

 The MSC provides 20 levels of subroutine nesting. The STACK OVERFLOW status flag will be set if more

than 20 levels are used.

RETURNS:
 None.

SEE:
 goto

USAGE:
 MSC-250: gosub
 MSC-850/32: gosub
 MSC-850: gosub
 MSC-800: gosub

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 185

 goto
SYNTAX:
 label goto address_label

PARAMETERS:
 address_label Label where execution will continue.

DESCRIPTION:
 Branches to the specified address label.

RETURNS:
 None.

SEE:
 gosub

USAGE:
 MSC-250: goto
 MSC-850/32: goto
 MSC-850: goto
 MSC-800: goto

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 186 JUNE 1995

 if
SYNTAX:
 label if compare1 operator compare2,address_label

PARAMETERS:
 compare1 Variable or constant to be compared.
 operator Type of comparison to be performed.
 compare2 Variable or constant to be compared.
 address_label Branch address if comparison is true.

DESCRIPTION:
 Performs arithmetic comparison and causes branching to the specified address if the comparison is true.

 If the comparison is false, no branching occurs and execution continues with the next instruction.

 Operator
 symbols Description
 ---------- ---------------
 = Equal to
 <> Not equal to
 > Greater than
 < Less than
 >= Greater than or equal to
 <= Less than or equal to

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: if
 MSC-850/32: if
 MSC-850: if
 MSC-800: if

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 187

 if_bit_clr
SYNTAX:
 label if_bit_clr bit#,variable,address_label

PARAMETERS:
 bit# Bit number of the 4-byte variable to be tested.
 Range:0 to 31
 variable The 4-byte variable to be tested.
 address_label Branch address.

DESCRIPTION:
 Branch to the specified address if the specified bit is cleared (logic 0).

 If the bit tested is on (logic 1), no branching occurs and execution continues with the next instruction.

 This instruction will be ignored if 'bit#' is outside the range of 0 to 31.

RETURNS:
 None.

SEE:
 if_bit_set

USAGE:
 MSC-250: if_bit_clr
 MSC-850/32: if_bit_clr
 MSC-850: if_bit_clr
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 188 JUNE 1995

 if_bit_set
SYNTAX:
 label if_bit_set bit#,variable,address_label

PARAMETERS:
 bit# Bit number of the 4-byte variable to be tested.
 Range:0 to 31
 variable The 4-byte variable to be tested.
 address_label Branch address.

DESCRIPTION:
 Branch to the specified address if the specified bit is set to on (logic 1).

 If the bit tested is off (logic 0), no branching occurs and execution continues with the next instruction.

 This instruction will be ignored if 'bit#' is outside the range of 0 to 31.

RETURNS:
 None.

SEE:
 if_bit_clr

USAGE:
 MSC-250: if_bit_set
 MSC-850/32: if_bit_set
 MSC-850: if_bit_set
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 189

 if_char
SYNTAX:
 label if_char port#,address_label

PARAMETERS:
 port# MSC communications port number.
 Range: MSC-250 1,2,3
 MSC-850/32 0I,0R,0,1,2,3
 MSC-850 0,2
 MSC-800 0,2
 address_label Branch address.

DESCRIPTION:
 Branches to the specified address if characters are sensed at the specified port.

 If no characters are sensed, execution continues with the next instruction.

RETURNS:
 None.

SEE:
 if_no_char

USAGE:
 MSC-250: if_char
 MSC-850/32: if_char
 MSC-850: if_char
 MSC-800: if_input_on

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 190 JUNE 1995

 if_flag_off
SYNTAX:
 label if_flag_off user_flag#,address_label

PARAMETERS:
 user_flag# Flag number to test.
 Range: 208 to 255
 address_label Branch address.

DESCRIPTION:
 Branch to the specified address if the specified user flag is off.

 If the user flag is on, no branching occurs and execution continues with the next instruction.

RETURNS:
 None.

SEE:
 if_flag_on

USAGE:
 MSC-250: if_flag_off
 MSC-850/32: if_flag_off
 MSC-850: if_flag_off
 MSC-800: if_flag_off

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 191

 if_flag_on
SYNTAX:
 label if_flag_on user_flag#,address_label

PARAMETERS:
 user_flag# Flag number to test.
 Range: 208 to 255
 address_label Branch address.

DESCRIPTION:
 Branch to the specified address if the specified user flag is on.

 If the user flag is not on, no branching occurs and execution continues with the next instruction.

RETURNS:
 None.

SEE:
 if_flag_off

USAGE:
 MSC-250: if_flag_on
 MSC-850/32: if_flag_on
 MSC-850: if_flag_on
 MSC-800: if_flag_on

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 192 JUNE 1995

 if_io_off
SYNTAX:
 label if_io_off I/O flag#,address_label

PARAMETERS:
 I/O flag# Input or Output module number.
 Range: MSC-250 0 to 47
 MSC-850/32 0 to 71
 MSC-850 0 to 71
 MSC-800 0 to 71
 address_label Branch address.

DESCRIPTION:
 Branches to the specified address if the specified I/O flag is off.

 If the I/O flag is on, branching does not occur and execution continues with the next instruction.

RETURNS:
 None.

SEE:
 if_io_on

USAGE:
 MSC-250: if_io_off
 MSC-850/32: if_io_off
 MSC-850: if_io_off
 MSC-800: if_io_off

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 193

 if_io_on
SYNTAX:
 label if_io_on I/O flag#,address_label

PARAMETERS:
 I/O flag# Input or Output module number.
 Range: MSC-250 0 to 47
 MSC-850/32 0 to 71
 MSC-850 0 to 71
 MSC-800 0 to 71
 address_label Branch address.

DESCRIPTION:
 Branches to the specified address if the specified I/O flag is on.

 If the I/O flag is off, branching does not occur and execution continues with the next instruction.

RETURNS:
 None.

SEE:
 if_io_off

USAGE:
 MSC-250: if_io_on
 MSC-850/32: if_io_on
 MSC-850: if_io_on
 MSC-800: if_io_on

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 194 JUNE 1995

 if_no_char
SYNTAX:
 label if_no_char port#,address_label

PARAMETERS:
 port# MSC communications port number.
 Range: MSC-250 1,2,3
 MSC-850/320 I,0R,0,1,2,3
 MSC-850 0,2
 MSC-800 0,2
 address_label Branch address.

DESCRIPTION:
 Branches to the specified address if no characters are sensed at the specified port.

 If characters are sensed, execution continues with the next instruction.

RETURNS:
 None.

SEE:
 if_char

USAGE:
 MSC-250: if_no_char
 MSC-850/32: if_no_char
 MSC-850: if_no_char
 MSC-800: if_input_off

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 195

 if_stat_off
SYNTAX:
 label if_stat_off status_flag#,address_label

PARAMETERS:
 status_flag# Controller status flag.
 Range: MSC-250 80 to 143
 MSC-850/32 80 to 207
 MSC-850 80 to 207
 MSC-800 80 to 207
 address_label Branch address.

DESCRIPTION:
 Branches to the specified address label if the controller status flag indicated is off.

 If the controller status flag is on, branching does not occur and execution continues with the next instruction.

RETURNS:
 None.

SEE:
 if_stat_on

USAGE:
 MSC-250: if_stat_off
 MSC-850/32: if_stat_off
 MSC-850: if_stat_off
 MSC-800: if_stat_off

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 196 JUNE 1995

 if_stat_on
SYNTAX:
 label if_stat_on status_flag#,address_label

PARAMETERS:
 status_flag# Controller status flag.
 Range: MSC-250 80 to 143
 MSC-850/32 80 to 207
 MSC-850 80 to 207
 MSC-800 80 to 207
 address_label Branch address.

DESCRIPTION:
 Branches to the specified address label if the controller status flag indicated is on.

 If the controller status flag is off, branching does not occur and execution continues with the next instruction.

RETURNS:
 None.

SEE:
 if_stat_off

USAGE:
 MSC-250: if_stat_on
 MSC-850/32: if_stat_on
 MSC-850: if_stat_on
 MSC-800: if_stat_on

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 197

 if_tmr_off
SYNTAX:
 label if_tmr_off timer_flag#,address_label

PARAMETERS:
 timer_flag# Timer flag number.
 Range: 72 to 79
 address_label Branch address.

DESCRIPTION:
 Branches to the specified address if the timer flag indicated is off.

 If the timer flag is on, branching does not occur and execution continues with the next instruction.

RETURNS:
 None.

SEE:
 set_tmr
 if_tmr_on

USAGE:
 MSC-250: if_tmr_off
 MSC-850/32: if_tmr_off
 MSC-850: if_tmr_off
 MSC-800: if_tmr_off

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 198 JUNE 1995

 if_tmr_on
SYNTAX:
 label if_tmr_on timer_flag#,address_label

PARAMETERS:
 timer_flag# Timer flag number.
 Range: 72 to 79
 address_label Branch address.

DESCRIPTION:
 Branches to the specified address if the timer flag indicated is on.

 If the timer flag is off, branching does not occur and execution continues with the next instruction.

RETURNS:
 None.

SEE:
 set_tmr
 if_tmr_off

USAGE:
 MSC-250: if_tmr_on
 MSC-850/32: if_tmr_on
 MSC-850: if_tmr_on
 MSC-800: if_tmr_on

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 199

 incr_com
SYNTAX:
 label incr_com controller#,bits,interrupts

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 bits The incremental value, in bits, to be added to the commanded position.
 Interrupts The number of motor interrupts to move the distance specified in 'bits'. Motor interrupts

occur every 1 ms in the MSC-850/32 & MSC-850 and every 500 μs in the MSC-250.

DESCRIPTION:
 This instruction calculates the number of bits to be added to the commanded position, each motor interrupt

as a result of the calculations 'bits/motor interrupts'. Resulting accel/decel rates are not limited. 'bits' may be
signed for direction.

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: incr_com
 MSC-850/32: incr_com
 MSC-850: incr_com
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 200 JUNE 1995

 index
SYNTAX:
 label index controller#,distance

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9
 distance Incremental number of bits to move.
 Range: MSC-250 (-524287*4096) to (+524287*4096) -1
 MSC-850/32 (-2048 * 4096) to (+2048 * 4096) -1
 MSC-850 (-2048 * 4096) to (+2048 * 4096) -1
 MSC-800 (-2048 * 4096) to (+2048 * 4096) -1

DESCRIPTION:
 Commands the specified controller to index the motor the distance given. The speed of the move is

determined by the previously set accel/decel rate and speed.

 The MSC has a resolution of 4096 bits per turn. To index 1 turn, distance would be 4096.

 The axis controller status flags MOTOR BUSY and MOTOR INDEXING will be set (ON) while the motor is

indexing.

 This instruction will be ignored if the controller has not received a drive_on instruction or if the controller is

busy executing a motion instruction. If the instruction cannot be executed, the axis status flag COMMAND
INVALID IN THIS STATE will be set. This flag will automatically be cleared by the controller at the next
communication between the main processor and the axis controller. In the MSC-850 and MSC-800 this
automatically occurs every 100 milliseconds even if no Macroprogram instruction directs communication to
occur.

RETURNS:
 Position

SEE:
 No related instructions.

USAGE:
 MSC-250: index
 MSC-850/32: index
 MSC-850: index
 MSC-800: index

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 201

 initialize
SYNTAX:
 label initialize unit,data_area,status

PARAMETERS:
 unit File identifier.
 Range: 1 to 8
 data_area Label of a 'text' instruction containing the volume name.
 status Variable containing the result of the operation.

DESCRIPTION:
 This instruction writes a volume name from 'data_area' to the EPROM label area. Only one name may be

written to a given EPROM.

RETURNS:
 None.

SEE:
 create
 write
 read
 close
 get_space
 get_volume
 load
 save
 text
 get_volume

USAGE:
 MSC-250: initialize
 MSC-850/32: initialize
 MSC-850: initialize
 MSC-800: initialize

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 202 JUNE 1995

 input
SYNTAX:
 label input label,length,decimals,variable,user_flag

PARAMETERS:
 label ASCII string (prompt) to be displayed
 length Maximum length of input value.
 decimals Decimal places in the input value.
 variable The value entered.
 user_flag Flag indicating input is complete.

DESCRIPTION:
 Prepares and reads numeric (only) information from an MSC port. The port is selected by using the

port_set instruction.

 Input string 'length' determines the number of characters accepted during input. The number of characters

includes the sign and decimal point (if applicable) as well as the number of characters.

 'Decimal places' indicates the number of values to the right of the decimal point.

 Input 'variable' is the destination address of the numeric input.

 The port_set instruction must be executed prior to invoking the input instruction.

 The characters allowed while entering strings with length exceeding 1 character are +.-1234567890.

 If the value being entered has an actual character length greater than the specified input string 'length', the

excess characters are ignored. Actual string lengths less than the input string length are permitted and are
justified accordingly.

RETURNS:
 The return 'variable' contains the numeric conversion of the ASCII string entered at the terminal. This

number value is value * (10 ^ decimals).

EXAMPLE

 If 2.2 is entered
 and decimals = 1
 then value = 2.2 * (10 ^ 1) = 2.2 * 10 = 22

SEE:
 text
 port_set
 print
 print_num

USAGE:
 MSC-250: input
 MSC-850/32: input
 MSC-850: input
 MSC-800: input

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 203

 integer
SYNTAX:
 label integer

PARAMETERS:
 None.

DESCRIPTION:
 This statement assigns a 32-bit storage location, or variable, to the name 'label'. The storage location will be

initialized to zero when the Macroprogram is loaded into the MSC Controller.

 This instruction requires a 'label'.

RETURNS:
 None.

SEE:
 dim
 equ
 text

USAGE:
 MSC-250: integer
 MSC-850/32: integer
 MSC-850: integer
 MSC-800: integer

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 204 JUNE 1995

 jog_ccw
SYNTAX:
 label jog_ccw controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9

DESCRIPTION:
 Commands the specified controller to turn the motor shaft in a counter-clockwise direction using the last set

accel/decel rate and speed. Motion will continue until an f_decel instruction is executed.

 This instruction sets the controller status flags AXIS BUSY and AXIS JOGGING. These flags remain set

until an f_decel instruction causes the motor to reach zero speed.

 This instruction will be ignored if the controller has not received a drive_on instruction, or if the controller is

busy executing a motion instruction. If the instruction cannot be executed, the axis status flag COMMAND
INVALID IN THIS STATE will be set. This flag will automatically be cleared by the controller at the next
communication between the main processor and the axis controller. This occurs automatically every 100
milliseconds even if no Macroprogram instruction directs communication to occur.

RETURNS:
 None.

SEE:
 jog_cw
 set_speed
 set_ac_dc
 f_decel

USAGE:
 MSC-250: jog_ccw
 MSC-850/32: jog_ccw
 MSC-850: jog_ccw
 MSC-800: jog_ccw

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 205

 jog_cw
SYNTAX:
 label jog_cw controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9

DESCRIPTION:
 Commands the specified controller to turn the motor shaft in a clockwise direction using the last set

accel/decel rate and speed. Motion will continue until an f_decel instruction is executed.

 This instruction sets the controller status flags AXIS BUSY and AXIS JOGGING. These flags remain set

until an f_decel instruction causes the motor to reach zero speed.

 This instruction will be ignored if the controller has not received a drive_on instruction, or if the controller is

busy executing a motion instruction. If the instruction cannot be executed, the axis status flag COMMAND
INVALID IN THIS STATE will be set. This flag will automatically be cleared by the controller at the next
communication between the main processor and the axis controller. This occurs automatically every 100
milliseconds even if no Macroprogram instruction directs communication to occur.

RETURNS:
 None.

SEE:
 jog_ccw
 set_speed
 set_ac_dc
 f_decel

USAGE:
 MSC-250: jog_cw
 MSC-850/32: jog_cw
 MSC-850: jog_cw
 MSC-800: jog_cw

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 206 JUNE 1995

 l_track_spd
SYNTAX:
 label l_track_spd controller#,speed

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9
 speed Entry Range: -32768 to +32767
 Resulting Speed: -128 to +127 RPM

DESCRIPTION:
 The specified controller tracks (changes to) the speed indicated divided by 256. All speed changes occur at

the previously set accel/decel rate divided by 256.

 The speed may be changed at any time.

 This instruction sets the controller status flags AXIS BUSY and AXIS JOGGING. These flags remain set

until a f_decel instruction causes the motor to reach zero speed.

 This instruction will be ignored if the controller has not received a drive_on instruction, or if the controller is

busy executing a motion instruction. If the instruction cannot be executed, the axis status flag COMMAND
INVALID IN THIS STATE will be set. This flag will automatically be cleared by the controller at the next
communication between the main processor and the axis processor. In the MSC-850, this occurs
automatically every 100 milliseconds even if no Macroprogram instruction directs communication to occur.

RETURNS:
 None.

SEE:
 track_spd

USAGE:
 MSC-250: l_track_spd
 MSC-850/32: l_track_spd
 MSC-850: l_track_spd
 MSC-800: l_track_spd

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 207

 let
SYNTAX:
 label let variable=operand1 opcode operand2
 label let variable=function(operand1) * MSC-850/32, MSC-850, MSC-250 ONLY *

PARAMETERS:

 variable Resulting value.
 operand1 Variable or constant.
 opcode Operation to be performed.
 operand2 Variable or constant.
 function Allowable function type. * MSC-850/32, MSC-850, MSC-250 ONLY *

DESCRIPTION:
 Performs the indicated arithmetic operation as follows:

 opcode operation
 -------- -----------
 + addition
 - subtraction
 * multiplication
 / division
 & bitwise and
 | bitwise or
 ^ bitwise exclusive or * MSC-850/32, MSC-850, MSC-250 ONLY *
 [] array indexing
 >> shift right
 << shift left
 }} rotate right
 {{ rotate left

 function operation
 ---------- -----------
 sqr square root of operand1 * MSC-850/32, MSC-850, MSC-250 ONLY *
 abs absolute value of operand1 * MSC-850/32, MSC-850, MSC-250 ONLY *
 neg negate operand1 * MSC-850/32, MSC-850, MSC-250 ONLY *

 The only arithmetic operation allowed, using arrays, is a simple assign. Operations such as add, subtract,

multiply etc. are not allowed.

 The let instruction can be used to transfer data (in 4-byte blocks) from Macroprogram data memory to the

volatile memory of an axis controller. The following example will dimension a 100-element array called
'test_array' on controller# 3. The value 1234 will be placed in element 19 (array subscripts are zero based)
of this array.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 208 JUNE 1995

 let (continued)

EXAMPLE

 test_array dim 3,100
 .
 .
 .
 let test_array[18]=1234

 The let instruction can be used to transfer data (in 4-byte blocks) from the volatile memory of an axis

controller to Macroprogram data memory. The following example will dimension a 100-element array called
'test_array' on controller# 8. The current value of element 3 (array subscripts are zero based) will be placed
into variable 'x'. This type of operation can ONLY be used on MSC-850/32, MSC-850 and MSC-250
systems.

EXAMPLE

 test_array dim 8,100
 .
 .
 .
 let x=test_array[2]

RETURNS:
 None.

SEE:
 let_byte

USAGE:
 MSC-250: let
 MSC-850/32: let
 MSC-850: let
 MSC-800: let

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 209

 let_byte
SYNTAX:
 label let_byte destination=source

PARAMETERS:
 destination Variable or cam table element.
 source Variable or cam table element.

DESCRIPTION:
 Used to store and retrieve cam elements, one byte at a time. The only arithmetic operation allowed using

the let_byte instruction is a simple assign.

 Can also be used to pack or split 32 bits to 8 bits or 8 bits to 32 bits.

 The let_byte instruction can be used to transfer data (in 1-byte blocks) from Macroprogram data memory to

the volatile memory of an axis controller. The following example will dimension a 100 element array called
'test_array' on controller# 3. The value 117 will be placed in byte 19 (array subscripts are zero based) of this
array. This type of operation can ONLY be used on MSC-850/32, MSC-850 and MSC-250 systems.

EXAMPLE

 test_array dim 3,100
 .
 .
 .
 let_byte test_array[18]=117

 The let_byte instruction can be used to transfer data (in 1-byte blocks) from the volatile memory of an axis

controller to Macroprogram data memory. The following example will dimension a 100 element (400 byte)
array called 'test_array' on controller# 8. The current value of byte 3 (array subscripts are zero based) will
be placed into variable 'x'. This type of operation can ONLY be used on MSC-850/32, MSC-850 and MSC-
250 systems.

EXAMPLE

 test_array dim 8,100
 .
 .
 let_byte x=test_array[2]

RETURNS:
 None.

SEE:
 let

USAGE:
 MSC-250: let_byte
 MSC-850/32: let_byte
 MSC-850: let_byte
 MSC-800: let_byte

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 210 JUNE 1995

 load
SYNTAX:
 label load unit,file_name,status

PARAMETERS:
 unit File identifier.
 Range: 1 to 8
 file_name Label of the 'text' statement containing the file name.
 status Variable containing the result of the operation.

DESCRIPTION:
 This instruction loads the macroprogram file specified by 'file_name'.

 If the specified macroprogram is found, it will replace entirely the macroprogram currently residing in the

MSC.

 When the 'load' is completed, program execution begins automatically. If the file does not contain a

macroprogram, the current program continues execution at the instruction following the load instruction.
Data may not be passed to the new program using this instruction.

RETURNS:
 The return variable will be non-zero if the operation fails. Non-zero status codes are described in Table

15.3.2.

SEE:
 open
 close
 create
 read
 write
 initialize
 get_space
 get_volume
 load

USAGE:
 MSC-250: load
 MSC-850/32: load
 MSC-850: load
 MSC-800: load

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 211

 lock
SYNTAX:
 label lock controller#,lock#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 lock # Lock method (see explanations below)

NOTE:
 Lock modes 0, 5, 8 and 9 (described below) may be used in conjunction with the switch cam feature. See

the switch_cam instruction for additional information and examples on the use of the combined features.

DESCRIPTIONS:
 Locks the specified controller onto the master position vector as defined by the master angle configuration.

 Lock # Lock Method

 0 cam lock

 The MSC multi-axis controllers provide a mode of operation that effectively emulates mechanical cams. In

the electronic cam mode, slave axes follow digital cams based on the master angle from one of the master
angle buses. Electronic cams are tables of incremental motor moves. Each incremental value occupies
one byte of memory in the MSC and has an allowable range of -127 to +127. The slave controller uses the
current master position to determine the proper index into the electronic cam array. As the index moves
through the cam table, the incremental distances are added together to form the proper slave axis position.
Linear interpolation is performed between elements in the cam array.

 When lock method 0 is executed, the cam executes at the first element in the array. When the end of the

cam table is reached, the process begins again at the beginning of the table. This process is bi-directional,
with the cam moving to increasing positive number elements with clockwise master rotation and decreasing
number elements with counterclockwise rotation.

 Further information about cam lock can be found by reviewing the following instructions; cam_data,

set_cam_ptr, get_cam_ptr, switch_cam, get_cam_strt, get_cam_end, get_cam_sum, calc_unit_cam,
begin_cam, end_cam.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 212 JUNE 1995

 lock (continued)
 Lock # Lock Method

 1 simple lock with accel/decel limits

 Lock method 1 provides the electronic equivalent of a gearbox. The electronic gearbox or ratio is driven by

the master angle from one of the master angle buses. The master angle is processed by the previously
specified ratio instruction and an offset is added, resulting in an effective master used to drive the slave
command position.

 When lock method 1 is executed, the axis controller calculates the instantaneous offset between the master

angle processed by the ratio and the slave command position. Once the offset is calculated, master slave
lock is accomplished. Once per millisecond (MSC-850 and MSC-850/32) or once every 488 microseconds
(MSC-250) thereafter, the slave axis position is updated based on the new master position. The slave
motion is limited by the previously set accel/decel rate (see set_ac_dc) and is limited to a speed of 3600
RPM (MSC-850 and MSC-850/32) or 7200 RPM (MSC-250). The limiting of the slave acceleration can be
an advantage in systems that have rough or rapidly changing master speeds. The limited acceleration on
the slave dampens the slave motor and smooths out the operation.

 The ratio instruction can be executed while in lock method 1. When the ratio instruction is executed, the

slave controller switches to simply slewing at the set_ac_dc rate until the slave reaches the new slave
speed. When the speed is matched, a new offset is calculated and lock is resumed. It is important to note
that after a ratio instruction is executed, a new offset is used. The axis status flag MOTOR JOGGING is on
while the slave motor is changing from one speed to another. This flag goes off when the ratio lock equation
starts executing. The acceleration rate may be changed during the slew from one speed to another caused
by a ratio change. A set_ac_dc executed prior to the ratio instruction will cause the slew acceleration rate
to change.

 The result of executing a lock command may vary, depending on the value used in the ratio command and

the command sequence. This can best be illustrated using the following examples:

 EXAMPLE 1

 label ratio slave,ratio_value
 .
 .
 .
 lock slave,1

 At the moment the lock is executed:
 a) the slave axis will calculate an internal master/slave "offset", by comparing the master angle with the

slave position
 b) the slave axis will accelerate at the rate set using the last set_ac_dc command
 c)the slave axis will "make up" the distance lost during the acceleration time, by running at a faster

rate for that same period of time (the slave axis would appear to momentarily "overshoot" the
requested ratio)

 d) the slave axis will run at the requested ratio while maintaining the internal master/slave "offset"

 Subsequent changes in 'ratio_value' will not result in the slave axis "making up" any lost distance while

adjusting to a new ratio.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 213

 lock (continued)
 EXAMPLE 2

 In this example, the ratio command is executed twice. The result of locking the slave axis will be different

than that of EXAMPLE 1.

 label ratio slave,0
 .
 .
 lock slave,1
 .
 .
 ratio slave,ratio_value

 At the moment the lock is executed:
 a) the slave axis will calculate an internal master/slave "offset", but since the ratio is initially set to zero,

no motion occurs

 At the moment the second ratio instruction is executed:
 a) the slave axis will accelerate at the rate set using the last set_ac_dc command
 b) the slave axis will run to the requested ratio while maintaining the internal master/slave "offset" (the

slave axis will NOT attempt to "make up" any lost distance while adjusting to the new ratio)

 Lock # Lock Method

 2 velocity lock

 In velocity lock, the slave axis tracks the master velocity with accel/decel limit.

 3 piecewise profile lock

 In piecewise profile lock, the slave axis will execute the piecewise profile in memory when the master angle

(modulo 4096) crosses the specified angle from either direction (CW or CCW). This master angle is
specified by the instruction set_trig_pw. The instruction prep_profile must be executed before the lock
instruction.

 4 simple lock without accel/decel limits

 Lock method 4 is identical to lock method 1. The only difference is that the slave axis is not limited by the

specified slave acceleration rate. This means that during lock, the slave is commanded directly by the
effective master position. Note: Any perturbations or roughness in the master will be passed onto the slave
with no accel/decel rate limiting.

 The ratio instruction can be executed during lock method 4. When a new ratio is executed, the slave

controller breaks lock, slews to new lock sped at the specified acceleration rate and relocks using the above
equation. The MOTOR JOGGING status flag is on during the slew period. Note that after the slew period a
new offset is calculated. The acceleration rate may be changed during slew executing a set_ac_dc
instruction prior to the ratio instruction.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 214 JUNE 1995

 lock (continued)
 Lock # Lock Method

 5 cam lock

 Lock method 5 is identical to lock method 0 except that the user has the option of positioning the cam

pointer to a position other than the beginning of the cam. This is accomplished by executing the
set_cam_ptr instruction. Execution of the cam will begin at the position in the cam data table at the cam
pointer.

 6 keyway lock

 Lock method 6 allows the user to align the absolute position of the slave with the absolute position of the

master. The ratio in Lock Method 6 is fixed at 1:1 and may not be changed. The slave controller
acceleration rate is limited by the previously executed set_ac_dc instruction. The slave top speed is also
limited to 3600 RPM.

 When the lock instruction is executed, the slave controller executes the following equation every 1

millisecond:

 master angle = slave command position

 This equation is executed modulo 1 turn (4096 bits) of the master. This means that when the lock

instruction is executed, the slave will move, at the acceleration rate specified, in the shortest direction to
bring the master and slave absolute angles into alignment. Note that Lock Method 6 can cause movement
when lock is executed even if the master is at rest.

 The slave accel and speed are limited. Hunting can occur if the master rate of change is greater than the

specified slave acceleration rate. The rule of thumb of having the slave acceleration rate at least 5 times the
expected master rate of change is applicable. The limited acceleration rate can be used to smooth a master
with fast perturbations (roughness).

 7 undefined

 8 lock cam to master angle

 In lock type 8, the slave axis will begin executing its cam when the master axis crosses the specified angle

(modulo 4096) from either direction (CW or CCW). This angle is specified using the instruction
set_trig_cam. It is possible to start execution of the cam from any point in the cam by using the instruction
set_cam_ptr. The axis status flag SWITCH CAM PENDING will be set until the master crosses the specified
lock angle and execution of the cam begins.

 9 lock cam to master angle for 1 cycle only

 Lock type 9 is identical to lock type 8 except that execution of the cam will automatically terminate at the last

element in the cam.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 215

 lock (continued)
 Lock # Lock Method

 10 velocity cam lock

 In lock method 10, the output is no longer based on distance but varies with speed changes in the cam

table, based on a constant calculated at the time the lock command is issued. Lock method 10 must be
executed after lock method 0 ot 5. The position output voltage will reflect the velocity of the cam rather than
the position of the cam. Following error checking and software digital compensation are disabled.

RETURNS:

None.

SEE:
 set_map
 ratio
 set_trig_pw
 set_trig_cam
 set_cam_ptr

USAGE:
 MSC-250: lock all lock types available
 MSC-850/32: lock all lock types available
 MSC-850: lock all lock types available
 MSC-800: lock lock types 0,1,2,3,4,5

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 216 JUNE 1995

 master
SYNTAX:
 label master controller#

PARAMETERS:
 controller# controller id #
 Range: MSC-800 1 to 8

DESCRIPTION:
 Resets all motor fault conditions and puts the specified axis controller into a passive position sensing mode.

 Turns the servo amplifier off and disables the following error check.

 Sets the analog position output to be proportional to the feedback transducer position as follows:

RETURNS:
 For an MSC-850/ACE-850 controller, the above table will not be accurate unless an appropriate find marker

instruction had been done.

RETURNS:
 None.

SEE:
 drive_on
 drive_off
 enable

USAGE:
 MSC-250: drive_off
 MSC-850/32: drive_off
 MSC-850: drive_off
 MSC-800: master

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 217

 msc_type
SYNTAX:
 label msc_type system_type

PARAMETERS:
 system_type The type of MSC system type being used.
 Range: 800, 850, 250, 850/32

DESCRIPTION:
 This statement is a MSC Toolkit Compiler directive.

 It is used by the Compiler to identify the instruction set that is allowed for use with the designated system

unit. This will help avert the situation where a programmer attempts to use an instruction that is not
supported by the system unit.

 The Compiler will assume the msc_type is 800 if this instruction is not included in the macroprogram.

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: msc_type
 MSC-850/32: msc_type
 MSC-850: msc_type
 MSC-800: msc_type

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 218 JUNE 1995

 no_op
SYNTAX:
 label no_op

PARAMETERS:
 None.

DESCRIPTION:
 Performs a 'no operation' instruction. Commonly used to provide a short time delay.

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: no_op
 MSC-850/32: no_op
 MSC-850: no_op
 MSC-800: no_op

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 219

 offset_master
SYNTAX:
 label offset_master controller id#,offset

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 offset Offset to be added to the master position. This value is a signed 32-bit number.

DESCRIPTION:
 This command instructs the operating system to add the specified offset value (in bits) to the actual

transducer angle of the specified master controller before it is placed on the master angle bus. The offset is
an absolute value added to the master angle and is unaffected. Only the data being placed on the master
angle bus is affected.

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: offset_master
 MSC-850/32: offset_master
 MSC-850: N/A
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 220 JUNE 1995

 open
SYNTAX:
 label open unit,file_name,status

PARAMETERS:
 Unit File identifier.
 Range: 1 to 8
 file_name Label of the text statement containing the file name.
 Status Variable containing the result of the operation.

DESCRIPTION:
 This instruction attempts to open the specified file for reading. The MSC associates the file name with the

unit identifier and will set the file record pointer to the beginning of the file. Up to 8 files may be open at one
time.

RETURNS:
 The return variable will be zero if the operation is successful. Non-zero status codes are described in

Section 15.3.2.

SEE:
 create
 initialize
 write
 read
 close
 get_space
 get_volume
 load
 save

USAGE:
 MSC-250: open
 MSC-850/32: open
 MSC-850: open
 MSC-800: open

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 221

 over_draw
SYNTAX:
 label over_draw controller#,speed,limit,distance

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 speed Desired speed to start overdraw in RPM. Must not exceed speed of associated index or

position instruction.
 limit Desired limit in bits. Represents maximum travel allowed if hardware interrupt does NOT

occur.
 distance Distance to travel AFTER the hardware interrupt occurs.

DESCRIPTION:
 This instruction is typically used in feed to sensor types of applications. Information provided by the

over_draw instruction modifies an index or position instruction as shown in Figure 18.1. As the index or
position instruction nears completion, motor speed will begin to decrease according to the set accel/decel
rate. When the motor speed reaches the value specified in the over_draw instruction, deceleration will
cease. The motor will run at constant speed until one of two conditions are met:

 1. The distance specified in 'limit' is reached. Should this occur, the motor will decelerate to a stop.
 2. The Controller's associated input module turns on. Should this occur, the position of the motor shaft

is immediately noted. The motor will stop 'distance' bits from the point the input module turns on.

 It should be noted that the motor shaft position is trapped immediately by the controller's hardware.

However, it may be as long as 1 millisecond before the trapped position is serviced. For this reason, the
'distance' variable should allow at least enough distance for deceleration plus the distance the motor shaft
would turn in 1 millisecond at the 'speed' specified in the over_draw instruction.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 223

 over_draw (continued)

EXAMPLE:
 busy_1 equ 94 axis busy flag
 hwi_armed_1 equ 91 interrupt armed flag
 .
 .
 set_speed 1,400 400 rpm
 set_ac_dc 1,100 100 rev/sec2
 .
 .
 enable_hwi
 over_draw 1,100,4096,2000

 ! wait for index to finish. If interrupt still armed, sensor not tripped

 loop
 if_stat_on 1,busy_1,loop
 if_stat_on 1,hwi_armed_1,od_fail
 .
 (normal processing)
 .
 od_fail
 (handle case where sensor not seen)

RETURNS:
 None.

SEE:
 enable_hwi
 disable_hwi

USAGE:
 MSC-250: over_draw
 MSC-850/32: over_draw
 MSC-850: over_draw
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 224 JUNE 1995

 port_set
SYNTAX:
 label port_set port#,baud,protocol

PARAMETERS:
 port# Port number on the MSC.
 Range: MSC-250 2, 3
 MSC-850/32 0I,0R,0,1,2,3
 MSC-850 0, 2
 MSC-800 0, 2
 baud Data transmission rates are listed below.
 protocol Communications characteristics are listed below.

DESCRIPTION:
 Open and initialize the specified communications port.

 The port_set instruction may be executed at any time.

 port# - 0 is the active current loop port for the MSC-800, MSC-850 and MSC-850/32.
 1 is the executive port for all MSC controllers.
 2 is the passive current loop port for all MSC controllers.
 3 is an RS-232C port on the MSC-250 and MSC-850/32.
 0I is the active/passive current loop port for the MSC-850/32.
 0R is an RS-232C port on the MSC-850/32.

 baud rate - use any one of the following:
 110, 300, 600, 1200, 2400, 4800, 9600 for all MSC controllers.
 19200, 38400 with ports 1 or 0R on the MSC-850/32.

 protocol - specify the communications characteristics as follows:

 protocol Description
 -------------- ------------------
 0 1 stop bit, no parity, XON/XOFF disabled

1 2 stop bits, no parity, XON/XOFF disabled
2 1 stop bit, even parity, XON/XOFF disabled
3 2 stop bits, even parity, XON/XOFF disabled

 4 1 stop bit, odd parity, XON/XOFF disabled
 5 2 stop bits, odd parity, XON/XOFF disabled
 6 RESERVED
 7 RESERVED
 8 1 stop bit, no parity, XON/XOFF enabled
 9 2 stop bits, no parity, XON/XOFF enabled
 10 1 stop bit, even parity, XON/XOFF enabled
 11 2 stop bits, even parity, XON/XOFF enabled
 12 1 stop bit, odd parity, XON/XOFF enabled
 13 2 stop bits, odd parity, XON/XOFF enabled

 If no parity, then data word is 8 bits. If even or odd parity, then data word is 7 bits.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 225

 port_set (continue)
RETURNS:
 None.

SEE:
 print_num
 print
 input
 stop_input
 get_pq_space
 if_char
 if_no_char

USAGE:
 MSC-250: port_set
 MSC-850/32: port_set
 MSC-850: port_set
 MSC-800: port_set

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 226 JUNE 1995

 position
SYNTAX:
 label position controller#,abs_position

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9
 abs_position The absolute position relative to position zero.
 Range: MSC-250 (-524287*4096) to (+524287*4096) -1 bits
 MSC-850/32 (-2048*4096) to (+2048*4096) -1 bits
 MSC-850 (-2048*4096) to (+2048*4096) -1 bits
 MSC-800 (-2048*4096) to (+2048*4096) -1 bits

DESCRIPTION:
 Move the controller to the specified position, relative to zero. The speed of the move is determined by the

previously set accel/decel rate and speed.

 The MSC has a resolution of 4096 bits per turn. To position to turn 1, 'abs_position' would be 4096.

RETURNS:
 None.

SEE:
 index

USAGE:
 MSC-250: position
 MSC-850/32: position
 MSC-850: position
 MSC-800: position

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 227

 prep_profile
SYNTAX:
 label prep_profile controller#,data_label

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9
 data_label Label of the data for the profile.

DESCRIPTION:
 Transmits the desired Piecewise profile data to the specified controller and prepares the data for execution.

While the motion controller is performing its' calculations, the CALCULATING PIECEWISE PROFILE
controller status flag will be on. When profile calculations or execution have been completed, this controller
status flag will be turned off. After calculations are completed, the get_pstat instruction may be used to
determine whether calculations completed successfully.

RETURNS:
 None.

SEE:
 exec_profile
 get_pstat

USAGE:
 MSC-250: prep_profile
 MSC-850/32: prep_profile
 MSC-850: prep_profile
 MSC-800: profile

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 228 JUNE 1995

 preset
SYNTAX:
 label preset controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable offset value

DESCRIPTION:
 Adds the offset value in bits to the master angle used to drive the PLS.

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: preset
 MSC-850/32: preset
 MSC-850: preset
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 229

 preset (MSC-850/HPL-850)
SYNTAX:
 label preset controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable The desired HPL accumulator value.

DESCRIPTION:
 Sets the HPL-850 accumulator to the specified count value. This instruction allows the user to set the HPL-

850 angle to a desired value regardless of the position of the Master Angle Bus driving the HPL-850.

RETURNS:
 None.

SEE:
 set_local

USAGE:
 MSC-250: N/A
 MSC-850/32: preset
 MSC-850: preset
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 230 JUNE 1995

 print
SYNTAX:
 label print text_label

PARAMETERS:
 text_label Label of a text string.

DESCRIPTION:
 Print the ASCII character string to the port declared in the previous port_set instruction.

 The execution of a port_set instruction must precede the execution of the print instruction.

 The output to the port is buffered, that is, the speed characteristics of the port do not affect the execution of

the MSC.

RETURNS:
 None.

SEE:
 input
 text

USAGE:

MSC-250: print
 MSC-850/32: print

MSC-850: print
 MSC-800: print

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 231

 print_num
SYNTAX:
 label print_num length,decimals,value

PARAMETERS:
 length Number of character places of 'value' parameter.
 decimals Number of decimal places of 'value' parameter.
 value Numeric value to be converted to ASCII characters and displayed according to the length

and decimal parameters.

DESCRIPTION:
 Print the output value to the port declared in the previous port_set instruction.

 The format of the printed number is defined by 'length' which declares the maximum number of character

positions allowed to represent the numeric value and by 'decimals' which declares the number of numeric
positions to the right of the decimal point.

 If the specified length is less than the actual length of the value to be printed, a string of asterisks (*) will be

printed instead. If the specified length is greater than the actual length of the value to be printed, the number
will be right justified accordingly.

 The execution of a port_set instruction must precede the execution of the print_num instruction.

 The output to the port is buffered, that is the speed characteristics of the port do not affect the execution of

the MSC.

RETURNS:
 None.

SEE:
 print
 text

USAGE:
 MSC-250: print_num
 MSC-850/32: print_num
 MSC-850: print_num
 MSC-800 :print_num

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 232 JUNE 1995

 rand_int
SYNTAX:
 label rand_int max_number,variable

PARAMETERS:
 max_number Maximum allowed number returned.
 Range: 1 to 65535
 variable Variable where result is returned.

DESCRIPTION
 Generates a random number in the range from 0 to the maximum number specified.

RETURNS:
 The random number is returned in 'variable'.

SEE:
 No related instructions.

USAGE:
 MSC-250: rand_int
 MSC-850/32: rand_int
 MSC-850: rand_int
 MSC-800: rand_int

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 233

 ratio
SYNTAX:
 label ratio controller#,ratio

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8

 Ratio Desired electronic ratio (in bits).
 Range: -32768 to +32767 (-8.000 to +7.999)

DESCRIPTION:
 Scale the master/slave position vector being passed by the 'ratio' value for the specified controller.

 Combined with the lock instruction (simple lock method), an electronic 'gear box' with a variable ratio may

be emulated.

 'ratio' is in bits (i.e. 4096 would give a ratio of 1:1).

RETURNS:
 None.

SEE:
 set_map
 unlock
 lock

USAGE:
 MSC-250: ratio
 MSC-850/32: ratio
 MSC-850: ratio
 MSC-800: ratio

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 234 JUNE 1995

 read
SYNTAX:
 label read unit,data_area,length,status

PARAMETERS:
 unit File identifier.
 Range: 1 to 8
 data_area Label of the begin_data, begin_cam, dim or variable name.
 length Number of bytes (characters) to be read.
 status Variable containing the result of the operation.

DESCRIPTION:
 This instruction reads data from the given 'data_area' to the specified unit (file). The number of bytes

(characters) to be read is given as 'length'.

RETURNS:
 The return variable will be zero if the operation is successful. Non-zero status codes are described in

Section 15.3.2.

SEE:
 open
 close
 write
 create
 initialize
 get_space
 get_volume
 load
 save

USAGE:
 MSC-250: read
 MSC-850/32: read
 MSC-850: read
 MSC-800: read

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 235

 read_offset
SYNTAX:
 label read_offset controller#,variable

PARAMETERS:
 controller#c ontroller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 variable Offset value in bits.

DESCRIPTION:
 Returns the current offset as set by the set_offset instruction.

RETURNS:
 The current offset is returned in the designated 'variable'.

SEE:
 set_offset

USAGE:
 MSC-250: read_offset
 MSC-850/32: read_offset
 MSC-850: read_offset
 MSC-800: read_offset

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 236 JUNE 1995

 restart_at
SYNTAX:
 label restart_at address_label

PARAMETERS:
 address_label Branch address.

DESCRIPTION:
 Clear all gosub return addresses and branch to the specified 'address label'.

RETURNS:
 None.

SEE:
 goto
 gosub

 return_sub
USAGE:
 MSC-250: restart_at
 MSC-850/32: restart_at
 MSC-850: restart_at
 MSC-800: restart_at

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 237

 return_sub
SYNTAX:
 label return_sub

PARAMETERS:
 None.

DESCRIPTION:
 Return from a subroutine invoked by a gosub instruction.

 The MSC provides 20 levels of subroutine nesting. The Macroprogram status STACK OVERFLOW will

occur if more than 20 levels are used.

 If a return_sub instruction is encountered without a corresponding gosub, a Macroprogram status of

STACK UNDERFLOW may occur.

RETURNS:
 None.

SEE:
 gosub

USAGE:
 MSC-250: return_sub
 MSC-850/32: return_sub

MSC-850: return_sub
MSC-800: return_sub

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 238 JUNE 1995

 save
SYNTAX:
 label save unit,file_name,status

PARAMETERS:
 unit File identifier.
 Range: 1 to 8.
 file_name Label of the text statement containing the file name.
 status Variable containing the result of the operation.

DESCRIPTION:
 This instruction saves the macroprogram and all data currently residing in the MSC as a file with the name

contained in 'file_name'.

RETURNS:
 The return variable will be zero if the operation is successful. Non-zero status codes are described in

Section 15.3.2.

SEE:
 open
 close
 create
 read
 write
 initialize
 get_space
 get_volume
 load

USAGE:
 MSC-250: save
 MSC-850/32: save
 MSC-850: save
 MSC-800: save

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 239

 select
SYNTAX:
 label select variable

PARAMETERS
 variable Variable to be tested.

DESCRIPTION:
 Change program flow based on the value of 'variable'. When executed, a program branch occurs to the

case statement which matches the specified 'variable'.

 If there is no match, program flow resumes at the instruction following the default instruction. The

exit_select instruction causes a branch to the instruction following the end_select instruction.

 EXAMPLE

 select num
 case 1
 .
 .
 exit_select

 case 2
 .
 .
 exit_select

 default
 .
 .
 exit_select
 end_select

RETURNS:
 None.

SEE:
 case
 exit_select
 default
 end_select

USAGE:
 MSC-250: select
 MSC-850/32: select
 MSC-850: select
 MSC-800: select

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 240 JUNE 1995

 set_ac_dc
SYNTAX:
 label set_ac_dc controller#,rate

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9
 rate Desired accel/decel rate in revs/sec/sec.
 Range: MSC-250 2 to 1600
 MSC-850/32 2 to 800
 MSC-850 2 to 800
 MSC-800 2 to 800

DESCRIPTION:
 Set the accel/decel rate for the specified controller. All motions for this controller (except cam, ratios and

piecewise profiles) will be determined by this rate.

 The rate is scaled in revs/sec/sec for all motions (except vel_cw and vel_ccw instructions) for which the

rate scale is (revs/sec/sec) / 256.

 The default accel/decel rate is 2 revs/sec/sec. This is also the lowest allowable accel/decel rate. The

highest allowable rate is 800 revs/sec/sec.

RETURNS:
 None.

SEE:
 set_speed

USAGE:
 MSC-250: set_ac_dc
 MSC-850/32: set_ac_dc
 MSC-850: set_ac_dc
 MSC-800: set_ac_dc

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 241

 set_acy_cnt (ACY-850)
SYNTAX:
 label set_acy_cnt controller#,count

PARAMETERS:
 controller# controller id#
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8
 count Desired encoder count in bits per revolution.
 Range: 2048, 4096, 8192 or 16384 counts only.

DESCRIPTION:
 Defines the number of bits generated per motor revolution. This number will be the result of multiplying the

encoder line count by 4.

NOTE:
 This instruction is ONLY valid when used with the ACY-850 axis controller.

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: N/A
 MSC-850/32: set_acy_cnt
 MSC-850: set_acy_cnt
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 242 JUNE 1995

 set_bit
SYNTAX:
 label set_bit bit#,variable

PARAMETERS:
 bit# Number of the bit within the 4-byte variable to be set to on (logic 1).
 Range: 0 to 31
 variable The 4-byte area in memory affected by this instruction.

DESCRIPTION:
 The specified bit will be set to on (logic 1). If that bit has been previously set, it will remain set. If that bit was

previously cleared (logic 0), it will now be set to on.

 This instruction has no effect on the remaining bits of this 4-byte variable.

 This instruction will be ignored if 'bit#' is outside the range of 0 to 31.

RETURNS:
 None.

SEE:
 clr_bit
 if_bit_set
 if_bit_clr

USAGE:
 MSC-250: set_bit
 MSC-850/32: set_bit
 MSC-850: set_bit
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 243

 set_cam_ptr
SYNTAX:
 label set_cam_ptr controller#,value

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 value The new start position within the cam table.
 Range: 0 to (cam table length - 1)

DESCRIPTION:
 Repositions the 'start of cam' pointer in the current cam table array for the selected controller. This

instruction must be used in conjunction with lock types 5, 8 and 9 in order to execute the cam from within
the table, rather than the start of the table.

RETURNS:
 None.

SEE:
 get_cam_ptr

USAGE:
 MSC-250: set_cam_ptr
 MSC-850/32: set_cam_ptr
 MSC-850: set_cam_ptr
 MSC-800: cam_pointer

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 244 JUNE 1995

 set_flag
SYNTAX:
 label set_flag user_flag#

PARAMETERS:
 user_flag# Number of the user flag.
 Range: 208 to 255

DESCRIPTION:
 Sets the specified user flag.

 If using a pseudo axis with an MSC-800 controller, flags 208-224 are used as axis status flags and should

not be used as user flags.

RETURNS:
 None.

SEE:
 clr_flag

USAGE:
 MSC-250: set_flag
 MSC-850/32: set_flag
 MSC-850: set_flag
 MSC-800: set_flag

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 245

 set_gl_ccw
SYNTAX:
 label set_gl_ccw controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9

DESCRIPTION:
 Set the absolute 0.0 position to the nearest position transducer zero in the counter-clockwise direction. The

current local 0.0 will be cleared. NOTE: For an ACE-850 controller or an MSC-250 controller, a find marker
instruction must be done before the set_gl_ccw instruction in order to produce meaningful results.

 This instruction may be executed while the motor is in motion. If it is performed while the motor is stopped,

no motion will occur.

 This instruction is often used in conjunction with a zero revolution switch to establish an absolute zero or

home position on multi-turn systems.

RETURNS:
 None.

SEE:
 set_gl_cw

USAGE:
 MSC-250: set_gl_ccw
 MSC-850/32: set_gl_ccw
 MSC-850: set_gl_ccw
 MSC-800: set_gl_ccw

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 246 JUNE 1995

set_gl_ccw (HPL-850)
SYNTAX:
 label set_gl_ccw controller#

PARAMETERS:
 controller# controller ID#
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8

DESCRIPTION:
 Sets the 0.0 degree reference to the nearest CCW Master Angle Bus 0.0.

RETURNS:
 None.

SEE:
 set_local
 set_gl_cw

USAGE:
 MSC-250: set_gl_ccw
 MSC-850/32: set_gl_ccw
 MSC-850: set_gl_ccw
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 247

 set_gl_cw
SYNTAX:
 label set_gl_cw controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9

DESCRIPTION:
 Set the absolute 0.0 position to the nearest position transducer zero in the clockwise direction. The current

local 0.0 will be cleared. NOTE: For an ACE-850 controller, a find marker instruction must be done before
the set_gl_cw instruction in order to produce meaningful results.

 This instruction may be executed while the motor is in motion. If it is performed while the motor is stopped,

no motion will occur.

 This instruction is often used in conjunction with a zero revolution switch to establish an absolute zero or

home position on multi-turn systems.

RETURNS:
 None.

SEE:
 set_gl_ccw

USAGE:
 MSC-250: set_gl_cw
 MSC-850/32: set_gl_cw
 MSC-850: set_gl_cw
 MSC-800: set_gl_cw

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 248 JUNE 1995

 set_gl_cw (HPL-850)
SYNTAX:
 label set_gl_cw controller#

PARAMETERS:
 controller# controller ID#
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8

DESCRIPTION:
 Sets the 0.0 degree reference to the nearest CW Master Angle Bus 0.0.

RETURNS:
 None.

SEE:
 set_local
 set_gl_ccw

USAGE:
 MSC-250: set_gl_cw
 MSC-850/32: set_gl_cw
 MSC-850: set_gl_cw
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 249

 set_hi_scan
SYNTAX:
 label set_hi_scan

PARAMETERS:
 None.

DESCRIPTION:
 Sets the I/O expander scan rate to once per 1.2 ms. This instruction may be used in systems with IOE-850

type expanders only. Default scan rates are as follows:
 1 expander - once every 12msec
 2 expanders - once every 24msec
 3 expanders - once every 36msec
 4 expanders - once every 48msec

RETURNS:
 None.

SEE:
 clr_hi_scan

USAGE:
 MSC-250: N/A
 MSC-850/32: set_hi_scan
 MSC-850: N/A
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 250 JUNE 1995

 set_home (ACY-850)
SYNTAX:
 label set_home controller#,offset

PARAMETERS:
 controller# controller id#
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8
 offset Position offset value.
 Range: -4096 to +4096

DESCRIPTION:
 Establishes a position offset for the specified controller. This instruction should be used when defining a

'home' or 0.0 reference location.

 The following steps illustrate how to clear the encoder 'turns' counter:

 1) Remove power to the motor/drive system.
 2) Remove the encoder cable from the drive to be zeroed.
 3) Position the device to its physical 'home' location.
 4) Drain the capacitor on the encoder unit for approximately 5 minutes.
 5) Reconnect the encoder cable.
 6) Enable power to the motor/drive system.

 The following Macroprogram example illustrates how to establish the 'offset' value and initial use of this

value. This procedure will typically be done only one time, until a new 'home' reference location is needed.

 EXAMPLE

 label drive_on acy_controller
 get_com acy_controller,position
 let offset=0-position
 set_home acy_controller,offset

 On subsequent power down/up sequences, it will be necessary to set the offset for the appropriate ACY-850

controller. It is important that the 'offset' value remain the same until a new 'home' reference location is
needed. Keep in mind that the value 'offset' is retained in NVRAM.

 EXAMPLE

 label drive_on acy_controller
 set_home acy_controller,offset

NOTE:
 This instruction is ONLY valid when used with the ACY-850 axis controller.

RETURNS:
 None.

SEE:
 No related instructions.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 251

 set_home (ACY-850) continued
USAGE:
 MSC-250: N/A
 MSC-850/32: set_home
 MSC-850: set_home
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 252 JUNE 1995

 set_local
SYNTAX:
 label set_local controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9

DESCRIPTION:
 Set the present motor position as the absolute 0.0 position. Will override the set_gl_ccw and set_gl_cw

instructions, however, the global 0.0 position is not changed.

 Used to establish a 'floating' home position.

RETURNS:
 None.

SEE:
 clr_local
 set_gl_cw
 set_gl_ccw

USAGE:
 MSC-250: set_local
 MSC-850/32: set_local
 MSC-850: set_local
 MSC-800: set_local

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 253

 set_local (HPL-850)
SYNTAX:
 label set_local controller#

PARAMETERS:
 controller# Slot number of the HPL-850 Controller.
 Range: 1 to 8

DESCRIPTION:
 Causes the HPL-850 Controller accumulator to be set to zero. The current Master Angle Data reading

becomes the zero degree position.

RETURNS:
 None.

SEE:
 set_gl_cw
 set_gl_ccw

USAGE:
 MSC-250: N/A
 MSC-850/32: set_local
 MSC-850: set_local
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 256 JUNE 1995

 set_mcf (MCF-850)
SYNTAX:
 label set_mcf controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8

 variable Multi-function controller configuration value.

DESCRIPTION:
 This instruction is used to configure the MCF-850 controller which is used with the MSC-850 and MSC-

850/32 systems. This card controls the Pseudo Axis, Master Angle Bus Network, Fiber Optic Network and
Programmable Limit Switch (PLS) functions.

 MSC-850/MCF-850 MULTI-FUNCTION CONFIGURATION

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 257

 set_mcf (continued)

SEE:
 get_mcf
 set_map

RETURNS:
 None.

USAGE:
 MSC-250: set_mcf
 MSC-850/32: set_mcf
 MSC-850: set_mcf
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 258 JUNE 1995

 set_mcf (HPL-850)
SYNTAX:
 label set_mcf controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8

 variable This value defines the source of the master angle which will drive the Programmable Limit

Switches.

DESCRIPTION:
 The value of variable above can be only one of the following:

 1) If variable = 0, there is no source for the PLS. This disables the PLS function.

 2) If variable = 1, the source of the master angle is Master Angle Bus A.

 3) If variable = 2, the source of the master angle is Master Angle Bus B.

RETURNS:
 None.

SEE:
 set_pls_ang (HPL-850 card)
 set_pls_cnt (HPL-850 card)

USAGE:
 MSC-250: set_mcf
 MSC-850/32: set_mcf
 MSC-850: set_mcf
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 259

 set_mcf (ACR-850 or ACE-850 or ACY-850)
SYNTAX:
 label set_mcf controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8

 variable A value of 1 will enable the "analog mode". A value of 0 will disable the "analog mode".

DESCRIPTION:
 The set_mcf instruction can be used with the ACR-850, ACE-850 and ACY-850 controller cards in order to

implement an open loop mode of operation known as "analog mode".

 In this mode of operation, the drive unit will be enabled by an external input source. A drive_off instruction

followed by a set_mcf instruction to the ACE-850, ACR-850 or ACY-850 will put that axis controller into
"analog mode". Once in "analog mode", the controller will be in an open loop mode where the analog output
to the drive is not driven by the "position loop", but rather is controlled in the Macroprogram using the
analog_out instruction.

 When used with the ACR-850, ACE-850 or ACY-850 cards, the analog_out instruction will now function in

the same manner as when it is used with the ACM-850 card. A voltage in the range of -10V to +10V, based
on an analog_out value ranging from -2048 to +2047, will be generated by the ACE-850, ACR-850 or ACY-
850 controller cards.

 A subsequent drive_on instruction will put the controller back into the normal "position loop mode" of

operation.

 The following program segment shows how a program might select the "analog mode" of operation, then

revert back to the normal "position loop mode" of operation.

 ! ----- This section enables "analog mode” on the WINDER axis controller -----
 !
 enable_t_mode turn_on WINDER_ENABLE ! enable the drive with a discreet output
 drive_off WINDER ! disable "position mode"
 set_mcf WINDER,1 ! enable "analog mode"

 ! ----- This section generates an output voltage at the WINDER axis controller -----
 !
 a_mode analog_out WINDER,1,volts ! ranges from -2048 to +2047 (-10V to +10V)
 if_io_on ANALOG_MODE,a_mode ! stay in "analog mode" while input activated

 ! ----- This section puts the output voltage at the WINDER back to zero -----
 !
 analog_out WINDER,1,0 ! output voltage back to zero
 set_tmr 72,100 ! short delay to allow the output to get to zero
 wait if_tmr_on 72,wait

 ! ----- This section enables normal "position mode" -----
 !

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 260 JUNE 1995

 set_mcf (continued)

 enable_p_mode drive_on WINDER ! enables "position mode"
 set_speed WINDER,speed ! set WINDER speed
 set_ac_dc WINDER,acdc ! set WINDER accel/decel rate
 index WINDER,distance ! index the WINDER

RETURNS:
 None.

SEE:
 analog_out (ACR-850 or ACE-850 or ACY-850 cards)
 drive_on

USAGE:
 MSC-250: set_mcf
 MSC-850/32: set_mcf
 MSC-850: set_mcf
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 261

 set_mcf (MSC-250 controller 3)
SYNTAX:
 label set_mcf controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 3

 variable Multi-function controller configuration value.

DESCRIPTION:
 This instruction is used to configure the multi-function controller on the MSC-250, which is controller #3.

This controls the Pseudo Axis, Master Angle Bus Network, Fiber Optic Network and Programmable Limit
Switch (PLS) functions.

 MSC-250 MULTI-FUNCTION
 CONFIGURATION

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 262 JUNE 1995

 set_mcf (continued)
RETURNS:
 None.

SEE:
 get_mcf
 set_map

USAGE:
 MSC-250: set_mcf
 MSC-850/32: set_mcf
 MSC-850: set_mcf
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 263

 set_mcf (MSC-250 controller 1 and 2)
SYNTAX:
 label set_mcf controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 or 2

 Variable A value of 1 will enable the "analog mode". A value of 0 will disable the "analog mode".

DESCRIPTION:
 The set_mcf instruction can be used with axis controllers #1 and #2 on the MSC-250 in order to implement

an open loop mode of operation known as "analog mode".

 In this mode of operation, the drive unit will be enabled by an external input source. A drive_off instruction

followed by a set_mcf instruction to either controller #1 or #2 will put that controller into "analog mode".
Once in "analog mode", the controller will be in an open loop mode where the analog output to the drive is
not driven by the position loop, but rather is controlled in the Macroprogram using the analog_out
instruction.

 When used with controllers #1 or #2, the analog_out instruction will now function in the same manner as

when it is used with axis controller #4 of the MSC-250. A voltage in the range of -10V to +10V, based on an
analog_out value ranging from -2048 to +2047, will be generated by the axis controller.

 A subsequent set_mcf instruction, using a value of 0 for the configuration value, will put the controller back

into the normal "position loop mode" of operation.

 The following program demonstrates how a program might select the "analog mode" of operation as well as

reverting back to the normal "position loop mode" of operation.

 !
 ! ----- This section enables "analog mode" on the WINDER axis controller -----
 !
 enable_t_mode turn_on WINDER_ENABLE ! enable the drive with a discreet output
 drive_off WINDER ! disable "position mode"
 set_mcf WINDER,1 ! enable "analog mode"

 !
 ! ----- This section generates an output voltage at the WINDER axis controller -----
 !
 a_mode analog_out WINDER,1,volts ! volts ranges from -2048 to +2047 (-10V to +10V)
 if_io_on ANALOG_MODE,a_mode ! stay in "analog mode" while input activated

 ! ----- This section puts the output voltage at the WINDER back to zero -----
 !
 analog_out WINDER,1,0 ! output voltage back to zero
 set_tmr 72,100 ! short delay to allow the output to get to zero
 wait if_tmr_on 72,wait

 !
 ! ----- This section enables normal "position mode" -----
 !

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 264 JUNE 1995

 set_mcf (continued)

 enable_p_mode set_mcf WINDER,0 ! disables "analog mode"
 drive_on WINDER ! enables "position mode"
 set_speed WINDER,speed ! set WINDER speed
 set_ac_dc WINDER,acdc ! set WINDER accel/decel rate
 index WINDER,distance ! index the WINDER

RETURNS:
 None.

SEE:
 analog_out (MSC-250 controller 1 and 2)

USAGE:
 MSC-250: set_mcf
 MSC-850/32: set_mcf
 MSC-850: set_mcf
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 265

 set_offset
SYNTAX:
 label set_offset controller#,value

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 value Desired offset in bits.
 Range: -32768 to +32767

DESCRIPTION:
 Offsets all positions by the specified value in bits.

 This instruction will cause the motor to move the distance specified by 'value' within the next motor interrupt.

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: set_offset
 MSC-850/32: set_offset
 MSC-850: set_offset
 MSC-800: set_offset

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 266 JUNE 1995

 set_ovd_mode
SYNTAX:
 label set_ovd_mode controller#,mode

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 mode Selects the section of the motion profile where the overdraw sensor is active.
 Range: 0 to 1

DESCRIPTION:
 Selects the section of the motion profile where the overdraw sensor is active.

 Mode 0 - the sensor is active through the entire profile.

 Mode 1 - the sensor is only active during the overdraw section of the profile.

 In mode 0, when the sensor is activated during the index part of his profile, the index will be treated as a

regular index with no search speed section executed.

RETURNS:
 None.

SEE:
 over_draw

USAGE:
 MSC-250: set_ovd_mode
 MSC-850/32: set_ovd_mode
 MSC-850: set_ovd_mode
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 267

 set_pls_ang (MCF-850)
SYNTAX:
 label set_pls_ang controller#,on_angle,off_angle,module#

PARAMETERS:
 controller# controller id#
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8
 on_angle Turn ON module# at this angle in bits.
 Range: 0 to 4095 (representing 1 full master cycle).
 off_angle Turn OFF module# at this angle in bits.
 Range: 0 to 4095 (representing 1 full master cycle).
 module# Desired output module on the PLS-850 output rack.
 Range: 0 to 23

DESCRIPTION:
 'PLS' is an acronym for Programmable Limit Switch.

 This instruction defines the action that will occur on the designated 'PLS' output module. 'module#' 0 to 15

are mapped to the PLS outputs. 'module#' 16 to 23 are mapped internally to the controller status flags.

 Each time a set_pls_ang instruction is issued, the axis controller executes a sorting algorithm and will

activate its' CALCULATING flag. The Macroprogram must verify that this flag is no longer active before
executing subsequent set_pls_ang instructions.

 The "rollover point" is the master cycle length in bits. The default "rollover point" is 4096. That is, the cycle

is defined as a value between 0 and 4095. For an MCF-850 controller, the "rollover point" can be modified
to be a value (in bits) of 4096, 8192, 16384, 32768 or 65536. The "rollover point" can be changed from the
default value of 4096 by using the set_pls_cnt instruction.

 The programmed PLS ON/OFF angles can still only range from 0 to 4095. These angles will be

automatically scaled by the controllers operating system to function with the new "rollover point". The
following two examples show the effect of using the default "rollover point" versus a longer "rollover point",
using the set_pls_cnt instruction.

EXAMPLE 1:

 ROLLOVER POINT = 4096
 PLS ON ANGLE = 1024
 PLS OFF ANGLE = 2047

 |----------|----------|----------|----------| MASTER BITS
 0 1023 2047 3071 4095

 |---off---|----on----|---off---|---off---| PLS STATUS

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 268 JUNE 1995

 set_pls_ang (continued)

EXAMPLE 2:

 ROLLOVER POINT = 8192
 PLS ON ANGLE = 1024
 PLS OFF ANGLE = 2047

 |--------------------|--------------------|--------------------|--------------------| MASTER BITS
 0 2047 4095 6143 8191

 |--------off--------|--------on---------|---------off--------|--------off---------| PLS STATUS

SEE:
 get_pls_out
 set_pls_mask
 set_pls_cnt (MCF-850 card)

USAGE:
 MSC-250: set_pls_ang
 MSC-850/32: set_pls_ang
 MSC-850: set_pls_ang
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 269

 set_pls_ang (HPL-850)
SYNTAX:
 label set_pls_ang controller#,on_angle,off_angle,module#

PARAMETERS:
 controller# controller id#
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8
 on_angle Turn ON module# at this angle in bits.
 Range: 0 to the "rollover point" in bits (representing 1 full master cycle).
 off_angle Turn OFF module# at this angle in bits.
 Range: 0 to the "rollover point" in bits (representing 1 full master cycle).
 module# Desired output module on the PLS-850 output rack.
 Range: 0 to 23

DESCRIPTION:
 'PLS' is an acronym for Programmable Limit Switch.

 This instruction defines the action that will occur on the designated PLS output module. 'module#' 0 to 15 are

mapped to the PLS outputs. 'module#' 16 to 23 are mapped internally to flags.

 Each time a set_pls_ang instruction is issued, the axis controller executes a sorting algorithm and will

activate its' CALCULATING flag. The Macroprogram must verify that this flag is no longer active before
executing subsequent set_pls_ang instructions.

 The "rollover point" is the master cycle length in bits. The default "rollover point" is 4096. That is, the cycle

is defined as a value between 0 and 4095. For an HPL-850 controller, the "rollover point" can be modified to
be a value (in bits) between 256 and 8,388,607. The "rollover point" can be changed from the default value
of 4096 by using the set_pls_cnt instruction.

 The programmed PLS ON/OFF angles can range up to the "rollover point" set using the set_pls_cnt

instruction. The following two examples show the effect of having a longer master cycle using the
set_pls_cnt instruction.

EXAMPLE 1:

 ROLLOVER POINT = 4096
 PLS ON ANGLE = 1024
 PLS OFF ANGLE = 2047

 |----------|----------|----------|----------| MASTER BITS
 0 1023 2047 3071 4095

 |---off---|----on----|---off---|---off---| PLS STATUS

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 270 JUNE 1995

 set_pls_ang (continued)

EXAMPLE 2:

 ROLLOVER POINT = 12000
 PLS ON ANGLE = 3000
 PLS OFF ANGLE = 5999

 |--------------------|--------------------|--------------------|--------------------| MASTER BITS
 0 2999 5999 8999 11999

 |--------off--------|--------on---------|---------off--------|--------off---------| PLS STATUS

RETURNS:
 None.

SEE:
 get_pls_out
 set_pls_mask
 set_pls_cnt (HPL-850 card)

USAGE:
 MSC-250: set_pls_ang
 MSC-850/32: set_pls_ang
 MSC-850: set_pls_ang
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 271

 set_pls_ang (MSC-250)
SYNTAX:
 label set_pls_ang controller#,on_angle,off_angle,module#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 3
 on_angle Turn ON module# at this angle in bits.
 Range: 0 to 4095 (representing 1 full master cycle).
 off_angle Turn OFF module# at this angle in bits.
 Range: 0 to 4095 (representing 1 full master cycle).
 module# Desired output module on the PLS-850 output rack.
 Range: 0 to 23

DESCRIPTION:
 'PLS' is an acronym for Programmable Limit Switch.

 This instruction defines the action that will occur on the designated PLS output module. 'module#' 0 to 15

are mapped to the PLS outputs. 'module#' 16 to 23 are mapped internally to flags.

 Each time a set_pls_ang instruction is issued, the axis controller executes a sorting algorithm and will

activate its' CALCULATING flag. The Macroprogram must verify that this flag is no longer active before
executing subsequent set_pls_ang instructions.

 The "rollover point" is the master cycle length in bits. This value is always 4096 for the MSC-250.

EXAMPLE 1:

 ROLLOVER POINT = 4096
 PLS ON ANGLE = 1024
 PLS OFF ANGLE = 2047

 |----------|----------|----------|----------| MASTER BITS
 0 1023 2047 3071 4095

 |---off---|----on----|---off---|---off---| PLS STATUS

RETURNS:
 None.

SEE:
 get_pls_out
 set_pls_mask

USAGE:
 MSC-250: set_pls_ang
 MSC-850/32: set_pls_ang
 MSC-850: set_pls_ang
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 272 JUNE 1995

 set_pls_cnt (MCF-850)
SYNTAX:
 label set_pls_cnt controller#,count

PARAMETERS:
 controller# controller id# of the HPL-850 controller.
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8
 count Sets the cycle length for the PLS function in bits/cycle.
 Range: 0 to 4.

DESCRIPTION:
 This instruction sets the cycle length for the PLS function in the MCF-850 card. The default PLS cycle

length is 4096 master bits per cycle. The following table shows the relationship between the "count" value
and the number of master bits per PLS cycle.

 count master bits per PLS cycle

 0 4096
 1 8192
 2 16384
 3 32768
 4 65536

 Changing the cycle length, however, does not change the allowable range of PLS ON/OFF angles. This will

still be a value from 0 to 4095, scaled by the controller to work within the new range of bits per cycle.

RETURNS:
 None.

SEE:
 set_pls_ang (MCF-850 card)

USAGE:
 MSC-250: N/A
 MSC-850/32: set_pls_cnt
 MSC-850: set_pls_cnt
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 273

 set_pls_cnt (HPL-850)
SYNTAX:
 label set_pls_cnt controller#,count

PARAMETERS:
 controller# controller id# of the HPL-850 controller.
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8
 count Sets the cycle length for the HPPLS in bits/cycle.
 Range: 256 to 8,388,607

DESCRIPTION:
 'HPPLS' is an acronym for High Performance Programmable Limit Switch.

 This instruction sets the cycle length for the HPPLS (360 degree reference). The 'count' is entered in terms

of bits/cycle on the Master Angle Bus.

 Changing the cycle length changes the allowable range of ON/OFF angles that may be entered, up to the

specified cycle length as indicated by this instruction.

RETURNS:
 None.

SEE:
 set_mcf (HPL-850 card)
 set_pls_ang (HPL-850 card)

USAGE:
 MSC-250: N/A
 MSC-850/32: set_pls_cnt
 MSC-850: set_pls_cnt
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 274 JUNE 1995

 set_pls_mask
SYNTAX:
 label set_pls_mask controller#,variable

PARAMETERS:
 controller# controller id#
 Range: MSC-250 Always 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 variable The currently defined 'pls' mask value.

DESCRIPTION:
 'pls' is an acronym for Programmable Limit Switch.

 Defines the 'pls' mask value used to enable/disable pls functioning of the pls outputs. The 3 low order bytes

of 'variable' represent the 24 associated output modules/flags.

 Those bits set in 'variable' will be masked with the currently defined 'pls' state to determine which 'pls'

modules will continue to be affected.

 The 'pls mask' is used to control the activity of the output modules without clearing and/or redefining the

output modules using the set_pls_ang instruction.

RETURNS:
 None.

SEE:
 get_pls_mask

USAGE:
 MSC-250: set_pls_mask
 MSC-850/32: set_pls_mask
 MSC-850: set_pls_mask
 MSC-800: N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 275

 set_pls_time
SYNTAX:
 label set_pls_time controller#,time,module#

PARAMETERS:
 controller# controller id# of the HPL-850 controller.
 Range: MSC-850/32 1 to 8
 MSC-850 1 to 8
 time Turn on/off 'module#' in advance of crossing its specified angle. Enter 'time' as

milliseconds*10.
 Range: 0 to 255
 module# Desired output module on the PLS-850 output rack.
 Range: 0 to 15

DESCRIPTION:
 'HPPLS' is an acronym for High Performance Programmable Limit Switch.

 This instruction assigns a time advance to the specified 'module#'.

 This will cause 'module#' to trigger 'time/10 milliseconds' in advance of crossing the specified on/off angle.

NOTE:
 This instruction is ONLY valid when used with the HPL-850.

RETURNS:
 None.

SEE:
 set_pls_ang

USAGE:
 MSC-250: N/A
 MSC-850/32: set_pls_time
 MSC-850: set_pls_time
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 276 JUNE 1995

 set_speed
SYNTAX:
 label set_speed controller#,speed

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 3
 MSC-850 1 to 8
 MSC-800 1 to 9
 speed Desired speed in RPM.
 Range: MSC-250 5 to 7200 RPM
 MSC-850/32 5 to 3600 RPM
 MSC-850 5 to 3600 RPM
 MSC-800 5 to 3600 RPM

DESCRIPTION:
 Set the speed of the specified controller to 'speed'.

RETURNS:
 None.

SEE:
 set_ac_dc

USAGE:
 MSC-250: set_speed
 MSC-850/32: set_speed
 MSC-850: set_speed
 MSC-800: set_speed

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 277

 set_swi_mask
SYNTAX:
 label set_swi_mask variable

PARAMETERS:
 variable The software interrupt mask variable.

DESCRIPTION:
 Determines which of the 32 software interrupts are active. A value of 1 in the corresponding bit of the mask

'variable' enables the software interrupt.

RETURNS:
 None.

SEE:
 swi_if_on
 swi_if_off
 enable_swi
 disable_swi
 clr_swi
 clr_all_swi

USAGE:
 MSC-250: set_swi_mask
 MSC-850/32: set_swi_mask
 MSC-850: N/A
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 278 JUNE 1995

 set_tmr
SYNTAX:
 label set_tmr timer_flag#,time

PARAMETERS:
 timer_flag# Timer flag number.
 Range: 72 to 79
 time Time to set.

DESCRIPTION:
 Activates or enables a timer for a time = 'time'. Time is given in .01 second intervals.

 The specified flag remains set until 'time' has expired.

RETURNS:
 None.

SEE:
 if_tmr_on
 if_tmr_off

USAGE:
 MSC-250: set_tmr
 MSC-850/32: set_tmr
 MSC-850: set_tmr
 MSC-800: set_tmr

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 279

 set_trig_cam
SYNTAX:
 label set_trig_cam controller#,master_angle

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 master_angle Angle of the master controller.
 Range: 0 to +4095

DESCRIPTION:
 Sets the trigger point for lock methods 8 & 9 (see lock). When the master controller angle crosses the

trigger angle from either direction, the slave axis begins executing the cam at the specified cam pointer. (The
cam pointer will be set to zero if no set_cam_ptr instruction has been executed prior to the lock).

RETURNS:
 None.

SEE:
 lock

USAGE:
 MSC-250: set_trig_cam
 MSC-850/32: set_trig_cam
 MSC-850: set_trig_cam
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 280 JUNE 1995

 set_trig_pw
SYNTAX:
 label set_trig_pw controller#,master_angle

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 master_angle Angle of the master controller.
 Range: 0 to +4095

DESCRIPTION:
 Sets the trigger point for lock method 3 (see lock). When the master controller angle equals the angle

position, a Piecewise profile is executed.

RETURNS:
 None.

SEE:
 prep_profile
 lock

USAGE:
 MSC-250: set_trig_pw
 MSC-850/32: set_trig_pw
 MSC-850: set_trig_pw
 MSC-800: set_trig_pw

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 281

 set_vgain
SYNTAX:
 label set_vgain controller#,vel_gain

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 vel_gain Feed forward gain value.

DESCRIPTION:
 This command sets the velocity feed forward gain for the specified 'controller id#'. During calculation of the

position output value for the specified controller, the velocity feed forward gain term is multiplied by the
current commanded velocity. The resultant value is added to the other digital compensation terms for that
controller.

 A starting value for the velocity gain term may be calculated as follows:

 K * 402,650
 Vg = --------------------
 BPR

 where 'K' is the velocity scale factor for the motor/drive system, in volts per 1000 RPM, and 'BPR' is the

number of transducer bits per revolution, after quadrature, of the motor shaft. For example, 'BPR' would be
4096 for a 1024 line encoder.

This instruction is used to compensate for following error caused by an extend velocity mode motor and
driver.

RETURNS:
 None.

SEE:
 digi_comp

USAGE:
 MSC-250: set_vgain
 MSC-850/32: set_vgain
 MSC-850: N/A
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 282 JUNE 1995

 stop_input
SYNTAX
 label stop_input

PARAMETERS:
 None.

DESCRIPTION:
 Terminates all active input instructions and clears the input buffer area of all characters.

RETURNS:
 None.

SEE:
 input
 if_char
 if_no_char

USAGE:
 MSC-250: stop_input
 MSC-850/32: stop_input
 MSC-850: stop_input
 MSC-800: stop_input

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 283

 swi_if_off
SYNTAX:
 label swi_if_off interrupt#,flag,subroutine_label

PARAMETERS:
 interrupt# Interrupt number.
 Range: 0 to 31
 flag Flag to trigger the interrupt.
 Range: 0 to 255
 subroutine_label Subroutine branch address.

DESCRIPTION:
 Sets up an event, which will trigger when 'flag' changes from on to off.

RETURNS:
 None.

SEE:
 swi_if_on
 enable_swi
 disable_swi
 clr_swi
 clr_all_swi
 set_swi_mask

USAGE:
 MSC-250: swi_if_off
 MSC-850/32: swi_if_off
 MSC-850: swi_if_off
 MSC-800: off_swi

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 284 JUNE 1995

 swi_if_on
SYNTAX:
 label swi_if_on interrupt#,flag,subroutine_label

PARAMETERS:
 interrupt# Interrupt number.
 Range:0 to 31
 flag Flag to trigger the interrupt.
 Range:0 to 255
 subroutine_label Subroutine branch address.

DESCRIPTION:
 Sets up an event, which will trigger when 'flag' changes from off to on.

RETURNS:
 None.

SEE:
 enable_swi
 disable_swi
 swi_if_off
 clr_swi
 clr_all_swi
 set_swi_mask

USAGE:
 MSC-250: swi_if_on
 MSC-850/32: swi_if_on
 MSC-850: swi_if_on
 MSC-800: on_swi

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 285

 switch_cam
SYNTAX:
 label switch_cam controller#,start element,# of elements

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 start element Element relative to axis card memory array element zero
 # of elements Number of cam elements

DESCRIPTION:
 The SWITCH CAM feature allows the programmer to switch from executing one cam to another. The

programmer specifies the starting element relative to element 0 in the axis controller's 28K array and the
number of elements to be executed.

 The manner in which the SWITCH CAM feature works, is dependent on a number of parameters:

 1) the lock type being used

 2) the order in which the switch_cam and lock instructions are executed

 3) the current state of the axis controller, as defined by its axis status flags

 When a cam is being executed and a switch_cam instruction is issued, tyhe LOCK PENDING status flag is

set until the cam "rolls" from the last to the first or the first to the last cam element. When the "roll" occurs,
the LOCK PENDING flag is cleared, the MASTER/SLAVE lock is set and the new cam begins execution.

 Execution of an unlock command will clear the LOCK PENDING axis status flag, if currently set.

EXAMPLE 1:
 When using the switch_cam instruction with lock mode 0 or 5 (assume the axis is not busy and a

cam_data instruction has been executed).

 MSC COMMAND RESULT

------------------------ -------------
 switch_cam a) sets the start/end of cam pointers
 b) no affect on axis status flags

 lock a) turn on MASTER/SLAVE LOCK and AXIS BUSY flags

 In this example, the switch takes place immediately (affecting the cam pointers) and the actual lock will

occur at the moment the lock command is issued.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 286 JUNE 1995

 switch_cam (continued)

EXAMPLE 2:
 When using the switch_cam instruction with lock mode 0 or 5 (assume the axis is not busy and a

cam_data instruction has been executed).

 MSC COMMAND RESULT
 ------------------------ -------------
 lock a) turn on MASTER/SLAVE LOCK and AXIS BUSY flags

 switch_cam a) sets the start/end of cam pointers for the next cam to be executed
 b) turns on the LOCK PENDING flag

 In this example, a lock takes place immediately. The switch_cam instruction will set up the cam pointers to

be used for the next cam, that is, the cam to be executed upon completion of the current cam.

EXAMPLE 3:
 When using the switch_cam instruction with lock mode 8 or 9 (assume the axis is not busy and a

cam_data instruction has been executed).

MSC COMMAND RESULT
 ------------------------ -------------
 set_trig_cam a) sets the lock trigger angle

 switch_cam a) sets the start/end of cam pointers
 b) no affect on axis status flags

 lock a) turn on LOCK PENDING and AXIS BUSY flags

 In this example, the switch takes place immediately (affecting the cam pointers) and the actual lock will

occur at the moment the master angle has crossed the defined trigger angle. Once the lock takes place, the
LOCK PENDING flag is turned off and the MASTER/SLAVE LOCK flag is turned on.

EXAMPLE 4:
 When using the switch_cam instruction with lock mode 8 or 9 (assume the axis is not busy and a

cam_data instruction has been executed).

 MSC COMMAND RESULT

------------------------ -------------
 set_trig_cam a) sets the lock trigger angle

 lock a) turn on LOCK PENDING and AXIS BUSY flags

 switch_cam if the LOCK PENDING flag is on, then
 a) sets the start/end of cam pointers
 b) no affect on axis status flags
 c) the actual lock occurs at the trigger angle
 if the MASTER/SLAVE LOCK flag is on, then
 a) turns on the LOCK PENDING flag
 b) the switch occurs upon completion of the current cam

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 287

 switch_cam (continued)

 In this example, if the LOCK PENDING flag is on at the moment the switch is executed, the result of the

switch is that the cam start/end pointers will be realigned and the lock will still occur when the master angle
crosses the trigger angle.

 In this example, if the LOCK PENDING flag is off at the moment the switch is executed (the master angle

has already crossed the trigger angle), the current cam will be completed and then the switch will occur.

NOTES:
 1) The lock instruction will only be executed when the AXIS BUSY flag is off, otherwise, it will be

ignored.

 2) A switch_cam instruction will override a previous switch_cam instruction that has not been

already implemented.

 3) A set_trig_cam instruction will override a previous set_trig_cam instruction that has not been

already implemented.

RETURNS:
 None.

SEE:
 lock

USAGE:
 MSC-250: switch_cam
 MSC-850/32: switch_cam
 MSC-850: switch_cam
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 288 JUNE 1995

 sys_fault
SYNTAX:
 label sys_fault

PARAMETERS:
 None.

DESCRIPTION:
 Stop execution of the macroprogram and set the system fault bit in the MSC status word.

 An f_decel instruction is executed for all controllers.

RETURNS:
 None.

SEE:
 sys_return

USAGE:
 MSC-250: sys_fault
 MSC-850/32: sys_fault
 MSC-850: sys_fault
 MSC-800: sys_fault

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 289

 sys_return
SYNTAX:
 label sys_return

PARAMETERS:
 None.

DESCRIPTION:
 Stop execution of the macroprogram and set the system return bit in the MSC status word.

 An f_decel instruction is executed for all controllers.

RETURNS:
 None.

SEE:
 sys_fault

USAGE:
 MSC-250: sys_return
 MSC-850/32: sys_return
 MSC-850: sys_return
 MSC-800: sys_return

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 290 JUNE 1995

 test_mode
SYNTAX:
 label test_mode controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8

DESCRIPTION:
 The designated controller will be put into test mode. See the hardware manual for the particular controller to

determine the function of test mode.

RETURNS:
 None.

SEE:
 No related instructions.

USAGE:
 MSC-250: test_mode
 MSC-850/32: test_mode
 MSC-850: test_mode
 MSC-800 N/A

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 291

 text
SYNTAX:
 label text "ASCII string"

PARAMETERS:
 string ASCII string (enclosed in quotes).

DESCRIPTION:
 Defines a string of characters for use with the print and input instructions.

 Control and special keyboard characters which cannot be typed may be used by entering the ASCII decimal

equivalent enclosed in '<' and '>'.

 This instruction requires a 'label'.

RETURNS:
 None.

SEE:
 print
 input

USAGE:
 MSC-250: text
 MSC-850/32: text
 MSC-850: text
 MSC-800: text

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 292 JUNE 1995

 track_spd
SYNTAX:
 label track_spd controller#,speed

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9
 speed Desired speed.
 Range: -3600 to +3600 RPM

DESCRIPTION:
 The specified controller tracks (changes to) the speed indicated. All speed changes occur at the previously

set accel/decel rate. The speed may be changed at any time.

 This instruction sets the controller status flags AXIS BUSY and AXIS JOGGING. These flags remain set

until a f_decel instruction causes the motor to reach zero speed.

 This instruction will be ignored if the controller has not received a drive_on instruction, or if the controller is

busy executing a motion instruction. If the instruction cannot be executed, the axis status flag COMMAND
INVALID IN THIS STATE will be set. This flag will automatically be cleared by the controller at the next
communication between the main processor and the axis controller. This occurs automatically every 100
milliseconds even if no Macroprogram instruction directs communication to occur.

RETURNS:
 None.

SEE:
 l_track_spd

USAGE:
 MSC-250: track_spd
 MSC-850/32: track_spd
 MSC-850: track_spd
 MSC-800: track_spd

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 293

 trap_pos
SYNTAX:
 label trap_pos controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8

DESCRIPTION:
 When the hardware interrupt signal on the designated motion controller is detected, the current position will

be saved immediately.

 This position can be retrieved later using the get_trap_pos instruction.

EXAMPLE

 hwi_armed_1 equ 91 interrupt armed flag
 .
 .
 enable_hwi
 trap_pos 1

 ! wait for indication that position has been trapped

 loop

 if_stat_on 1,hwi_armed_1,loop
 get_trap_pos 1,pos
 .

RETURNS:
 None.

SEE:
 get_trap_pos

USAGE:
 MSC-250: trap_pos
 MSC-850/32: trap_pos
 MSC-850: trap_pos
 MSC-800: N/A

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 294 JUNE 1995

 turn_off
SYNTAX:
 label turn_off I/O flag#

PARAMETERS:
 I/O flag# Output module number.
 Range: MSC-250 0 to 47
 MSC-850/32 0 to 71
 MSC-850 0 to 71
 MSC-800 0 to 71

DESCRIPTION:
 Causes the specified I/O flag to be turned off. If the corresponding I/O module is an output module, the

output module will turn off.

 The turn_off instruction should not be used for I/O flag positions equipped with input modules. This will

cause the MSC to designate that I/O flag as an output. The system will no longer respond correctly to the
corresponding input module.

RETURNS:
 None.

SEE:
 turn_on
 if_io_on
 if_io_off

USAGE:
 MSC-250: turn_off
 MSC-850/32: turn_off
 MSC-850: turn_off
 MSC-800: turn_off

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 295

 turn_on
SYNTAX:
 label turn_on I/O flag#

PARAMETERS:
 I/O flag# Output module number.
 Range: MSC-250 0 to 47
 MSC-850/32 0 to 71
 MSC-850 0 to 71
 MSC-800 0 to 71

DESCRIPTION:
 Causes the specified I/O flag to be turned on. If the corresponding I/O module is an output module, the

output module will turn on.

 The turn_on instruction should not be used for I/O flag positions equipped with input modules. This will

cause the MSC to designate that I/O flag as an output. The system will no longer respond correctly to the
corresponding input module.

RETURNS:
 None.

SEE:
 turn_off
 if_io_on
 if_io_off

USAGE:
 MSC-250: turn_on
 MSC-850/32: turn_on
 MSC-850: turn_on
 MSC-800: turn_on

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 296 JUNE 1995

 unlock
SYNTAX:
 label unlock controller#,mode#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 2
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 8
 mode# unlock method
 Range: 0 or 1

DESCRIPTION:
 Terminate the master/slave or CAM lock.

 Using 'mode' 0, the controller will decelerate to zero speed at the previously set accel/decel rate.

 Using 'mode' 1, the controller will unlock from the master, but will continue to run at the last commanded

speed. It will not decelerate until it is commanded to do so using the f_decel instruction.

RETURNS:
 None

SEE:
 lock

USAGE:
 MSC-250: unlock
 MSC-850/32: unlock
 MSC-850: unlock
 MSC-800: unlock

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 297

 vel_ccw
SYNTAX:
 label vel_ccw controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9

DESCRIPTION:
 The specified controller accelerates and runs in a counter-clockwise direction at the previously set

accel/decel rate and speed. The current accel/decel rate is divided by 256 before acceleration begins.

 Accel/decel rate and speed may be modified while executing the vel_ccw instruction.

 This instruction sets the controller status flags AXIS BUSY and AXIS JOGGING. These flags remain set

until a f_decel instruction causes the motor to reach zero speed.

 This instruction will be ignored if the controller has not received a drive_on instruction, or if the controller is

busy executing a motion instruction. If the instruction cannot be executed, the axis status flag COMMAND
INVALID IN THIS STATE will be set. This flag will automatically be cleared by the controller at the next
communication between the main processor and the axis controller. This occurs automatically every 100
milliseconds even if no Macroprogram instruction directs communication to occur.

RETURNS:
 None.

SEE:
 vel_cw

USAGE:
 MSC-250: vel_ccw
 MSC-850/32: vel_ccw
 MSC-850: vel_ccw
 MSC-800: vel_ccw

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INSTRUCTION SUMMARY IB-11C001

Page 298 JUNE 1995

 vel_cw
SYNTAX:
 label vel_cw controller#

PARAMETERS:
 controller# controller id#
 Range: MSC-250 1 to 3
 MSC-850/32 1 to 8
 MSC-850 1 to 8
 MSC-800 1 to 9

DESCRIPTION:
 The specified controller accelerates and runs in a clockwise direction at the previously set accel/decel rate

and speed. The current accel/decel rate is divided by 256 before acceleration begins.

 Accel/decel rate and speed may be modified while executing the vel_cw instruction.

 This instruction sets the controller status flags AXIS BUSY and AXIS JOGGING. These flags remain set

until a f_decel instruction causes the motor to reach zero speed.

 This instruction will be ignored if the controller has not received a drive_on instruction, or if the controller is

busy executing a motion instruction. If the instruction cannot be executed, the axis status flag COMMAND
INVALID IN THIS STATE will be set. This flag will automatically be cleared by the controller at the next
communication between the main processor and the axis controller. This occurs automatically every 100
milliseconds even if no Macroprogram instruction directs communication to occur.

RETURNS:
 None.

SEE:
 vel_ccw

USAGE:
 MSC-250: vel_cw
 MSC-850/32: vel_cw
 MSC-850: vel_cw
 MSC-800: vel_cw
 MSC-100: vel_cw

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INSTRUCTION SUMMARY

JUNE 1995 Page 299

 write
SYNTAX:
 label write unit,data_area,length,status

PARAMETERS:
 unit File identifier.
 Range: 1 to 8
 data_area Data source address. May be defined by begin_data, begin_cam, dim, or variable name.
 length Number of bytes (characters) to be written.
 status Variable containing the result of the operation.

DESCRIPTION:
 This instruction writes data from the given 'data_area' to the specified unit (file). The number of bytes

(characters) to be written is given as 'length'.

RETURNS:
 The return variable will be zero if the operation is successful. Non-zero status codes are described in

Section 15.3.2.

SEE:
 open
 close
 read
 create
 initialize
 get_space
 get_volume
 load
 save

USAGE:
 MSC-250: write
 MSC-850/32: write
 MSC-850: write
 MSC-800: write

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MACROPROGRAM INSTRUCTION LISTING IB-11C001

Page 300 JUNE 1995

 APPENDIX A Macroprogram Instruction Listing

INSTRUCTION COMMENTS MSC-100 MSC-800 MSC-850 MSC-250 MSC-850/32

analog_in U U U U
analog_out U U U U
analog_rt U U U U
analog_zo U U U U
begin_cam U U U U
begin_data U U U U U
blk_io_in U U U U
blk_io_out U U U U U
calc_cam_sum U U U
calc_unit_cam U U U
cam U U U U
cam_data U U U U
cam_pointer same as 'set_cam_ptr' U
case U U U U U
close U U U U
clr_all_swi U U U U
clr_bit U U U
clr_event obsolete - same as 'clr_swi' U U
clr_flag U U U U U
clr_hi_scan U
clr_local U U U U U
clr_swi U U U U U
create U U U U
data U U U U U
declare U U U U U
default U U U U U
digi_comp U U U U U
dim U U U U U
disable_hwi U U U
disable_swi same as 'swi_off' U U U
drive_off same as 'master' U U U
drive_on same as 'enable' U U U
enable same as 'drive_on' U U
enable_hwi U U U
enable_swi same as 'swi_on' U U U
end_cam U U U U
end_data U U U U U
end_select U U U U U
equ U U U U U
events_off same as 'disable_swi' U
events_on same as 'enable_swi' U
exec_profile U U U U U
exit_select U U U U U
f_decel also used with HWI U U U U U
find_mrk_ccw U U U
find_mrk_cw U U U

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MACROPROGRAM INSTRUCTION LISTING

JUNE 1995 Page 301

INSTRUCTION COMMENTS MSC-100 MSC-800 MSC-850 MSC-250 MSC-850/32

find_tm_ccw U U U
find_tm_cw U U U
get_act_spd U U U
get_angle U U U
get_cam_cnt U U U
get_cam_end U U U
get_cam_ptr U U U U
get_cam_strt U U U
get_cam_sum U U U
get_com same as 'store_com' U U U
get_fol_err U U U
get_for_ang U U U
get_frame obsolete U
get_mcf U U U
get_map U U U
get_map_stat U U U
get_mpos U
get_mspd U
get_pls_mask U U U
get_pls_out U U U
get_pos same as 'store_pos' U U U
get_pq_space U U
get_pstat U U U U U
get_space U U U U
get_status U U U U
get_t_mrk U U U
get_time same as 'store_time' U U U
get_trap_pos U U U
get_volume U U U U
gosub U U U U U
goto U U U U U
if U U U U U
if_bit_clr U U U
if_bit_set U U U
if_char same as 'if_input_on' U U U
if_flag_off U U U U U
if_flag_on U U U U U
if_input_off same as 'if_no_char' U U
if_input_on same as 'if_char' U U
if_io_off U U U U U
if_io_on U U U U U
if_no_char same as 'if_input_off' U U U
if_stat_off U U U U U
if_stat_on U U U U U
if_tmr_off U U U U U
if_tmr_on U U U U U
incr_com U U U
index also used with HWI U U U U U

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
MACROPROGRAM INSTRUCTION LISTING IB-11C001

Page 302 JUNE 1995

INSTRUCTION COMMENTS MSC-100 MSC-800 MSC-850 MSC-250 MSC-850/32

initialize U U U U
input U U U U U
integer U U U U U
jog_ccw U U U U U
jog_cw U U U U U
l_track_spd U U U U U
let U U U U U
let_byte U U U U U
load U U U U
lock also used with HWI U U U U
master same as 'drive_off' U U
msc_type U U U U U
no_op U U U U U
off_event same as 'swi_if_off' U U
off_swi same as 'swi_if_off' U
on_event same as 'swi_if_on' U U
on_swi same as 'swi_if_on' U
open U U U U
over_draw used with HWI only U U U
p_vector obsolete U
port_set U U U U U
pos_rewind obsolete U
position also used with HWI U U U U U
prep_profile same as 'profile' U U U
preset U U U
print U U U U U
print_num U U U U U
profile same as 'prep_profile' U U
rand_int U U U U U
ratio also used with HWI U U U U
read U U U U
read_offset U U U U U
reset obsolete - same as 'drive_on' U U
restart_at U U U U U
restart_cp obsolete U
return_sub U U U U U
rewind_cp obsolete U
save U U U U
select U U U U U
set_ac_dc U U U U U
set_acy_cnt U U
set_bit U U U
set_cam_ptr same as 'cam_pointer' U U U
set_flag U U U U U
set_gl_ccw U U U U U
set_gl_cw U U U U U
set_hi_scan U
set_home U U U

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 MACROPROGRAM INSTRUCTION LISTING

JUNE 1995 Page 303

INSTRUCTION COMMENTS MSC-100 MSC-800 MSC-850 MSC-250 MSC-850/32

set_local U U U U U
set_map U U U
set_mcf U U U
set_offset U U U U U
set_ovd_mode U U U
set_pls_ang U U U
set_pls_cnt U U U
set_pls_mask U U U
set_pls_time U U U
set_speed U U U U U
set_swi_mask U U
set_tmr U U U U U
set_trig_cam U U U
set_trig_pw U U U U U
set_vgain U U U
start_cp obsolete U
stop_input U U U U U
store_com same as 'get_com' U U
store_frm obsolete U
store_pos same as 'get_pos' U U
store_time same as 'get_time' U U
swi_if_off same as 'off_swi' U U U
swi_if_on same as 'on_swi' U U U
swi_off same as 'disable_swi' U U
swi_on same as 'enable_swi' U U
switch_cam U U U
sys_fault U U U U U
sys_return U U U U U
test_mode U U U
text U U U U U
track_spd U U U U U
trap_pos used with HWI only U U U
turn_off U U U U U
turn_on U U U U U
unlock U U U U
vel_ccw U U U U U
vel_cw U U U U U
write U U U U

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
APPENDIX B IB-11C001

Page 304 SEPTEMBER 1992

APPENDIX B CUSTOM SERIAL PORT
CONFIGURATION FOR THE MSC SOFTWARE

TOOLKIT

The MSC Software Toolkit, beginning with SFO3110R0, provides a feature to allow the use of non-standard serial
communications configurations. This feature is needed when:

1. Using devices with port addresses other than those for the standard COM1 and COM2 ports. Typical

examples include COM3 and COM4, and RS485 cards.

2. Using devices with IRQ levels other than the standards defined for COM1 and COM2.

3. Using various multiport serial communications cards like the Digiboard PC/X series.

Configuration of the Toolkit for non-standard communication ports is accomplished using a data file which contains
port address and interrupt information for each communication channel in use. A typical file is shown in Figure 1.

Notice that the file consists of a series of three entries for each COM port defined, separated from the next group by
a blank line. The word END indicates the end of the definition file.

For each COM port defined, you will need to know the base address of the UART registers and the interrupt request
(IRQ) setting. In our example file, the standard settings for COM1 and COM2 are shown. The remaining six entries
are typical of factory default settings for the first six ports of a Digiboard PC/8 multiport serial card. Up to 16 COM
ports may be defined in this manner.

Table I Configuration File Format

COM1
0x3f8
IRQ4

COM5
0x110
IRQ5

COM2
0x2f8
IRQ3

COM6
0x118
IRQ5

COM3
0x100
IRQ5

COM7
0x120
IRQ5

COM4
0x108
IRQ5

COM8
0x128
IRQ5

6 END

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 GLOSSARY OF TERMS

SEPTEMBER 1992 Page 305

 GLOSSARY OF TERMS

ACC-800 A card used with an MSC-800 to control a resolver based motor/drive

unit

ACCEL/DECEL The rate of change to achieve a desired speed. Unit of measure is

revs/sec2.

ACE-850 A card used with an MSC-850 to control an encoder based motor/drive

axis

ACM-800 A controller card used with an MSC-800 to send and receive analog

signals

ACM-850 A card used with an MSC-850 to send/receive analog signals

ACTUATOR A device which creates mechanical motion by converting various forms

of energy to mechanical energy.

AXIS An independent motor/drive unit which is controlled by an IIS type

controller

AXIS CONTROLLER A card which is used with either an MSC-800 or
 MSC-850 to control an independent motor/drive unit

CLOSED LOOP

A regulating device in which the actuator position is sensed, and a
signal proportional to this position (feed-back position) is compared
with a signal proportional to the desired actuator position (command
position). The difference between these signals is the error signal.
The error signal causes a change in the actuator so as to force this
signal to be zero.

COMMAND SIGNAL
GENERATOR

A device that supplies a command position signal to an automatic
control system. This signal represents the desired motion of the
actuator that is required to accomplish a task such as making a part.
This signal is usually in the form of an electrical signal.

COMMUNICATIONS The transmission of information from one device to another. The

information can take many forms such as command signals, device
status and fault
conditions.

COMMUTATOR The part of the rotating armature of a motor that causes the electrical

current to be switched to various armature windings. The proper
sequenced switching of the windings creates the motor torque. The
commutator also provides the means to transmit the electrical current
from the stationary body of the motor to moving rotor.

COMPARATOR A device where the feedback signal is subtracted

from the command signal. The difference output of the comparator is
called the error signal.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
GLOSSARY OF TERMS IB-11C001

Page 306 SEPTEMBER 1992

DC DRIVE An electronic control unit for running DC motors. The DC drive
converts AC line current to a variable DC current to control a DC
motor. The DC drive has a signal input that controls the torque and
speed of the motor.

ENCODER A type of feedback device which converts mechanical motion into

electrical signals to indicate actuator position. Typical encoders are
designed with a printed disc and a light source. As the disc turns with
the actuator shaft, the light source shines through the printed pattern
onto a sensor. The light transmission is interrupted by the patterns on
the disk. These interruptions are sensed and converted to electrical
pulses. By counting these pulses, actuator shaft position is
determined.

FLAG A bit in memory used by the programer to evaulate

action to be taken. A program branch may be executed depending on
the true or false result of a bit test. There are four types of flags
supported by the Macroprogram language; axis status flags, I/O status
flags, timer status flags and user flags.

HOME A known point of reference frequently referred to as "global zero".

Used as a point of reference for absolute positioning.

HOST A computer system whose function is to monitor and coordinate the

processes of other devices. A host computer will typically coordinate
motion control functions as well as their interaction with other machine
processes.

HPL-850 A card used with an MSC-850 multi-axis controller which provides high

performance programmable limit switches.

I/O The reception and transmission of information (Input/Output) between

control devices. In modern control systems, I/O has two distinct forms.
 In one, it refers to switches, relays, etc. In the other form, I/O refers to
analog signals that are continuous in nature such as speed,
temperature, flow, etc.

INDEX An index instruction will move the motor shaft an absolute distance

relative to the current position.

INERTIA The measure of an object's resistance to a change in its current

velocity.

INITIALIZE To execute a series of macro program instructions in order to teach an

MSC axis controller an absolute zero reference.

INSTRUCTION A Macroprogram command to the MSC. All instructions have the

following format:
have the following format:

label instruction parameters comment

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 GLOSSARY OF TERMS

SEPTEMBER 1992 Page 307

INSTABILITY Undesirable motion of an actuator that is different from the

commanded motion. Instability can take the form of irregular speed or
hunting of the final rest position.

IOE-800 A rack containing up to 16 interchangeable I/O modules. The modules

may be AC or DC and any combination of input and output.

 oan MSC-100 will support up to 2 IOE-800 racks
 oan MSC-800 will support up to 4 IOE-800 racks
 oan MSC-850 will support up to 4 IOE-800 racks

This device is also commonly referred to as an
I/O Expander.

JOG A jog instruction will move the motor shaft in the specified direction

using the predefined speed and accel/decel rates. Once at speed, the
motor will continue to jog until commanded to stop.

LINE SHAFT A shaft rotated by the primary motor drive. The

line shaft transmits power from the motor to a load or series of loads.
In the multiple load case, the motions of the loads are synchronized to
one another because they are driven from a common shaft.

MSC TOOLKIT The personal computer based software package used to edit, compile

and debug Macroprograms developed for MSC controllers.

MACROPROGRAM A program written in IIS' basic-like language for the MSC family of

motion controllers.

MICROPROCESSOR A miniaturized computer system that executes instructions in a

sequential manner. The sequential instructions form a control strategy
for devices that may be connected to the system.

The sequential instructions are loaded into the microprocessor and
can be easily changed or modified. Modern microprocessors are
small electronic devices that execute a wide range of instructions at
speeds as high as 1,000,000 instructions per second.

MOTOR DIRECTION The direction that a motor shaft is turning is determined by the facing

the front of the motor shaft. From this perspective, direction is
determined to be clockwise or counter-clockwise.

MAC-800 The main processor within the MSC-800 System Unit, which

communicates with the axis controllers as well as external devices
such as Personal Computers, I/O Expanders and operator interface
devices.

MCF-850 A card used with an MSC-850 controller which provides optional high

level functions such as 32K of non-volatile data storage, pseudo axis
capability, and programmable limit switches.

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
GLOSSARY OF TERMS IB-11C001

Page 308 SEPTEMBER 1992

MSC-100 A single axis, programmable servo motion controller

MSC-800 A multi-axis, programmable servo motion controller capable of

synchronously controlling from 1 to 8 axes.

MSC-850 A multi-axis, programmable servo motion controller capable of

synchronously controlling from 1 to 8 axes. This controller provides
more advanced capability than the MSC-800.

MULTI-AXIS
CONTROLLER

A system designed to control more than one actuator. This type of
controller allows the actuators to work independently or as a
coordinated group to perform more complex tasks.

ON-BOARD I/O The I/O module slots that are provided with an MSC System Unit.

Each MSC-800 or MSC-850 may have up to 8 onboard input and/or
output modules.

OPEN-LOOP SYSTEM A system where a command signal results in actuator movement

which is not sensed and therefore not corrected for error. Open loop
means no feedback.

OPERATOR
INTERFACE

A device that allows the operator to communicate with a machine.
This device typically has a keyboard or thumbwheel to enter
instructions into the machine. It may also have a display device that
allows the machine to display messages. An example of an operator
interface is the OPI-1.

OSCILLATION Undesirable motion of an actuator that is different from the command

motion. See INSTABILITY.

PARAMETER A value required for correct execution of an instruction. Each

instruction has a parameter list which is used by the controller to
execute the instruction. An example would be the index instruction.
The controller needs to know which axis to index and the distance to
index.

PLS-850 A rack containing up to 15 output modules for use with either an MCF-

850 programmable limit switch feature, or an HPL-850 high
performance programmable limit switch feature.

PERIPHERAL Various kinds of devices that operate in conjunction with an MSC

controller. Examples of these are PLC's, joysticks, computers, and
operator interfaces.

POSITION ERROR The difference between the present actuator position (feedback) and

the desired position (command).

POSITION FEEDBACK Present actuator position as measured by a position transducer.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 GLOSSARY OF TERMS

SEPTEMBER 1992 Page 309

PROGRAMMABLE
LOGIC CONTROLLER
(PLC)

(PLC) An electronic device that scans discrete (on/off) type inputs and
controls discrete (on/off) type outputs. The relationship between the
inputs and outputs are logical statements that are programmable by
the user.

RESOLVER A type of feedback device which converts mechanical position into an

electrical signal. A resolver is a variable transformer that divides the
impressed AC signal into two outputs, referred to as sine and cosine
output signals. The comparison of these two signals is used to
determine the absolute position of the resolver shaft.

ROTOR The rotating part of a magnetic structure. In a motor, the rotor is

connected to the motor shaft.

SERVO An automatic control device for controlling large amounts of power by

means of very small amounts of power and automatically correcting
the performance of the mechanism. Servo systems are closed loop
systems.

SERVO AMPLIFIER An electronic device which produces the winding current for a servo

motor. The amplifier converts a low level control signal into high
voltage and current levels to produce torque in the motor.

SERVO MOTOR An actuator which converts electrical energy (winding current) to

mechanical energy (torque). Servo motor construction is optimized to
provide maximum torque with minimum rotor inertia.

SYSTEM UNIT A system unit consists of an ENC850 Unit Enclosure and MAC850

Main Processor. The Unit Enclosure is a metal cabinet with a
motherboard mounted on the back plate. The Main Processor plugs
into a connector on the motherboard and provides the processing
power to run the operating system and customer application software.
 The motherboard serves as a multipurpose backplane in which the
command bus, on-board I/O bus, two angle busses, and power
distribution conductors reside.

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INDEX

Page 310 JUNE 1995

 INDEX

analog_in .. 101, 106, 109, 110, 112, 114, 115, 300
analog_out...101, 106, 109-115, 259, 260, 263, 264, 300
analog_rt... 101, 106, 109, 110, 112, 114, 115, 300
analog_zo... 101, 106, 109, 110, 112, 114, 115, 300
begin_cam..35, 73, 106, 116, 122, 124, 146, 211, 234, 299, 300
begin_data..31, 35, 48, 60, 61, 75, 106, 117, 134, 147, 234, 299, 300
blk_io_in ..47, 106, 118, 119, 300
blk_io_out ..47, 106, 118, 119, 300
calc_cam_sum ... 47, 76, 89, 106, 120, 121, 164, 300
calc_unit_cam ... 47, 73-76, 89, 106, 120, 121, 211, 300
cam.....35, 38, 39, 43, 44, 46, 47, 62, 67, 71-79, 89, 90, 96, 97, 106-108, 116, 120-124, 146, 160-164, 209, 211, 214,
 215, 234, 240, 243, 279, 285-287, 296, 299-303
cam_data.. 72-74, 76, 89, 96, 97, 106, 123, 124, 211, 285, 286, 300
cam_pointer... 243, 300, 302
case ... 23, 49, 52, 53, 72, 79, 106, 125, 136, 148, 151, 223, 239, 300, 307
close .. 99, 106, 126, 133, 178, 201, 210, 220, 234, 238, 299, 300
clr_all_swi ...66, 106, 127, 132, 140, 145, 277, 283, 284, 300
clr_bit ...50, 106, 128, 242, 300
clr_flag ...47, 106, 129, 244, 300
clr_local..55, 106, 131, 252, 300
clr_swi...66, 106, 127, 132, 140, 145, 277, 283, 284, 300
create...8, 17, 92, 96, 98, 99, 106, 126, 133, 135, 178, 201, 210, 220, 234, 238, 299, 300
data...... 6-8, 11, 12, 14, 17, 24-27, 29, 31, 32, 35, 41, 46, 48, 49, 54, 60-63, 67, 71-80, 82, 83, 86, 88-94, 96-98, 100,
 102, 106, 107, 108-110, 112, 116, 117, 121, 123, 124, 133-135, 146, 147, 150, 181, 183, 201,
 207-211, 214, 219, 224, 227, 234, 238, 253, 285, 286, 299, 300, 304, 307
declare...34, 35, 75, 106, 135, 300
default13, 20, 45, 52, 53, 55-57, 100, 106, 125, 136, 137, 148, 151, 239, 240, 249, 267, 269, 272, 300, 304
digi_comp ..55, 106, 137, 281, 300
dim ... 31, 35, 48, 74, 75, 96, 106, 138, 203, 208, 209, 234, 299, 300
disable_hwi..66, 106, 139, 144, 223, 300
disable_swi...66, 106, 127, 132, 140, 145, 277, 283, 284, 300, 303
drive_off ..47, 55, 106, 111, 113, 141, 142, 216, 259, 263, 300, 302
drive_on...... 34, 47, 55, 74, 106, 111, 141, 142, 150, 153-156, 200, 204-206, 216, 250, 259, 260, 263, 292, 297, 298,
 300, 302
enable_hwi ...65, 66, 106, 139, 143, 144, 182, 223, 293, 300
enable_swi ...66, 106, 127, 132, 140, 145, 277, 283, 284, 300, 303
end_cam... 35, 73, 106, 116, 122, 124, 146, 211, 300
end_data... 35, 48, 60, 61, 75, 106, 117, 134, 147, 300
end_select .. 52, 53, 106, 125, 136, 148, 151, 239, 300
equ... 24, 30, 34, 35, 61, 75, 82, 86, 87, 93, 94, 106, 149, 203, 223, 293, 300
exec_profile ..47, 61, 62, 65, 106, 143, 144, 150, 177, 227, 300
exit_select... 52, 53, 106, 125, 136, 148, 151, 239, 300
f_decel26, 29, 46, 47, 55, 59, 65, 66, 69, 78, 106, 110, 112, 143, 144, 150, 152, 204-206, 288, 289, 292, 296-298, 300
find_mrk_ccw ..47, 55, 106, 153, 154, 180, 300
find_mrk_cw ..47, 55, 106, 153, 154, 180, 300
find_tm_ccw ..55, 106, 155, 156, 180, 300
find_tm_cw ..55, 106, 155, 156, 180, 300
get_act_spd... 106, 157, 300
get_angle...95, 106, 158, 159, 301
get_cam_cnt.. 89, 106, 160, 301

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INDEX IB-11C001

JUNE 1995 Page 311

get_cam_end...89, 106, 161, 163, 211, 301
get_cam_ptr ..77, 89, 106, 162, 211, 243, 301
get_cam_strt..89, 107, 161, 163, 211, 301
get_cam_sum..76, 107, 120, 121, 164, 211, 301
get_com...63, 107, 165, 176, 250, 301, 303
get_fol_err ... 63, 107, 166, 301
get_for_ang ...95, 107, 158, 167, 301
get_map... 89, 107, 168-170, 255, 301
get_map_stat...89, 107, 169, 170, 255, 301
get_mcf..89, 107, 171, 172, 257, 262, 301
get_pls_mask ..95, 107, 173, 274, 301
get_pls_out... 90, 95, 107, 174, 268, 270, 271, 301
get_pos..63, 83, 107, 165, 176, 301, 303
get_pstat..61, 62, 107, 150, 177, 227, 301
get_space.. 99, 107, 126, 133, 178, 201, 210, 220, 234, 238, 299, 301
get_status .. 47, 107, 179, 301
get_t_mark... 107, 180
get_time... 107, 181, 301, 303
get_trap_pos ...66, 107, 182, 293, 301
get_volume.. 99, 107, 126, 133, 178, 183, 201, 210, 220, 234, 238, 299, 301
gosub.. 51, 53, 64, 107, 184, 185, 236, 237, 301
goto... 34, 51, 53, 107, 184, 185, 236, 301
if 6, 8, 10-14, 19-21, 23, 25-31, 33, 34, 45-47, 50-54, 60, 61, 64-66, 68, 70-72, 76, 77, 83, 90-94, 97, 100,
 102-105, 107, 108, 118, 119, 126-128, 132, 133, 135-137, 140, 142, 145, 150, 152, 175, 177-180,
 183, 184, 186-198, 200, 202, 204, 205, 206, 210, 214, 217, 220, 221, 223-225, 231, 234, 237-239,
 242, 244, 245, 247, 258, 259, 263, 277-279, 282-287, 292, 293-295, 297-299, 301-303
if_bit_clr ...53, 107, 187, 188, 242, 301
if_bit_set ..53, 107, 187, 188, 242, 301
if_char ... 53, 105, 107, 189, 194, 225, 282, 301
if_flag_off ...47, 53, 107, 190, 191, 301
if_flag_on ...47, 53, 107, 190, 191, 301
if_io_off ... 47, 53, 107, 192, 193, 294, 295, 301
if_io_on ...47, 53, 107, 192, 193, 259, 263, 294, 295, 301
if_no_char... 53, 105, 107, 189, 194, 225, 282, 301
if_stat_off ...47, 53, 107, 195, 196, 301
if_stat_on ..34, 47, 53, 61, 76, 93, 94, 107, 195, 196, 223, 293, 301
if_tmr_off..47, 53, 107, 197, 198, 278, 301
if_tmr_on... 47, 53, 107, 197, 198, 259, 263, 278, 301
incr_com.. 89, 107, 199, 301
index46, 47, 59, 65, 71, 72, 107, 143, 144, 200, 211, 221, 223, 226, 259, 264, 266, 301, 306, 308, 310
initialize ..94, 99, 107, 126, 133, 178, 201, 210, 220, 224, 234, 238, 299, 301, 306
input6, 15, 27, 37, 46, 47, 64, 65, 92, 100, 103-109, 111, 113-115, 118, 189, 192-194, 202, 221, 225, 230, 259,
 263, 282, 291, 294, 295, 301, 303, 305, 306, 308
integer... 31, 35, 48, 77, 107, 125, 149, 203, 301
jog_ccw..46, 47, 58, 59, 107, 204, 205, 301
jog_cw ...46, 47, 58, 59, 107, 204, 205, 301
l_track_spd ..46, 47, 58, 59, 107, 206, 292, 301
let ... 48-50, 61, 73-76, 82, 86, 87, 96, 103, 107, 123, 124, 207-209, 250, 302
let_byte ...49, 50, 61, 73, 96, 107, 123, 124, 208, 209, 302
load .. 8, 55, 56, 74-76, 97, 99, 107, 126, 133, 178, 201, 210, 220, 234, 238, 299, 302, 307
lock38-40, 43, 47, 65, 67-71, 73, 75, 77, 78, 80, 89, 107, 124, 143, 144, 152, 158, 211-215, 233, 243, 279, 280,
 285-287, 296, 302
master............ 38-40, 42, 43, 45, 47, 54, 55, 62, 67-74, 76-83, 86-94, 97, 106-108, 123, 141, 152, 157, 158, 168-170,

INDUSTRIAL INDEXING SYSTEMS, Inc. MACROPROGRAM DEVELOPMENT SYSTEM
IB-11C001 INDEX

Page 312 JUNE 1995

 211-214, 216, 219, 228, 229, 233, 246, 248, 253-256, 258, 261, 267-273, 279, 280, 285-287, 296,
 300, 302
msc_type ...34, 35, 75, 107, 217, 302
no_op... 107, 218, 302
offset_master... 107, 219
open.. 98, 99, 107, 111, 113, 126, 133, 178, 210, 220, 224, 234, 238, 259, 263, 299, 302, 308
over_draw..47, 65, 66, 107, 143, 144, 221-223, 266, 302
port_set...102, 103, 105, 107, 175, 202, 224, 225, 230, 231, 302
position18, 20, 22, 29, 33, 34, 45-49, 54-59, 62, 63, 65, 67-69, 71, 72, 77-80, 83, 90-92, 94, 108, 111, 113, 123,
 131, 141-144, 153-156, 165, 166, 176, 182, 199, 200, 211-216, 219, 221, 226, 229, 233, 243, 245,
 247, 250, 252, 253, 259, 263, 280, 281, 293, 302, 305, 306, 308, 309
prep_profile...47, 61, 62, 80, 97, 108, 150, 177, 213, 227, 280, 302
preset...92, 95, 108, 159, 228, 229, 302
print..6, 103-105, 108, 202, 225, 230, 231, 291, 302
print_num.. 103, 105, 108, 202, 225, 231, 302
profile38, 39, 43, 44, 46, 47, 60-62, 65, 67, 68, 70, 73, 74, 80, 97, 106, 108, 117, 134, 143, 144, 147, 150, 177,
 213, 222, 227, 266, 280, 300, 302
rand_int.. 108, 232, 302
ratio..65, 67-71, 73, 76, 77, 89, 108, 143, 144, 212-215, 233, 302
read...17, 21, 26, 28, 29, 31, 36, 63, 83, 97, 99, 100, 108, 109, 118, 126, 178, 201, 210, 220, 234, 235, 238, 299, 302
read_offset... 108, 235, 302
restart_at ...51, 53, 108, 236, 302
return_sub ...51, 53, 108, 184, 236, 237, 302
save ... 14, 16, 20, 22, 99, 108, 126, 133, 178, 201, 220, 234, 238, 299, 302
select11, 12, 14, 17, 21, 26, 31, 51-53, 102, 106, 108, 125, 136, 148, 151, 239, 259, 263, 300, 302
set_ac_dc ..34, 55, 69-71, 108, 153-156, 204, 205, 212-214, 223, 240, 259, 264, 276, 302
set_acy_cnt ... 55, 108, 241, 302
set_bit ... 50, 80, 82, 86, 87, 108, 128, 242, 302
set_cam_ptr... 73, 77, 78, 89, 108, 162, 211, 214, 215, 243, 279, 300, 302
set_flag ..47, 108, 129, 244, 302
set_gl_ccw...55, 92, 95, 108, 245-248, 252, 253, 302
set_gl_cw...55, 92, 94, 95, 108, 245-248, 252, 253, 302
set_hi_scan ... 108, 130, 249, 302
set_home...55, 108, 250, 251, 302
set_local .. 34, 55, 83, 92, 93, 95, 108, 131, 229, 246, 248, 252, 253, 302
set_map... 49, 68, 80, 82, 86, 87, 89, 108, 124, 168-170, 215, 233, 254, 255, 257, 262, 302
set_mcf ...49, 86, 87, 89, 91, 92, 95, 108, 111, 113, 142, 171, 172, 256-264, 273, 302
set_offset ...83, 108, 235, 265, 302
set_ovd_mode... 108, 266, 302
set_pls_ang ..91-95, 108, 174, 258, 267-275, 302
set_pls_cnt ...93-95, 108, 258, 267-270, 272, 273, 302
set_pls_mask ...91, 92, 95, 108, 173, 174, 268, 270, 271, 274, 302
set_pls_time ..93, 95, 108, 275, 302
set_speed...32, 34, 55, 108, 153-156, 204, 205, 223, 240, 259, 264, 276, 303
set_swi_mask...66, 108, 127, 132, 140, 145, 277, 283, 284, 303
set_tmr.. 47, 108, 181, 197, 198, 259, 263, 278, 303
set_trig_cam... 77, 89, 108, 214, 215, 279, 286, 287, 303
set_trig_pw ..62, 80, 108, 213, 215, 280, 303
set_vgain ...55, 58, 108, 137, 281, 303
stop_input ..105, 108, 225, 282, 303
swi_if_off...66, 108, 127, 132, 140, 145, 277, 283, 284, 302, 303
swi_if_on...66, 108, 127, 132, 140, 145, 277, 283, 284, 302, 303
switch_cam.. 89, 108, 161, 211, 285-287, 303

MACROPROGRAM DEVELOPMENT SYSTEM INDUSTRIAL INDEXING SYSTEMS, Inc.
INDEX IB-11C001

JUNE 1995 Page 313

sys_fault ..108, 152, 288, 289, 303
sys_return..34, 108, 152, 288, 289, 303
test_mode.. 47, 108, 290, 303
text .. 6, 15, 18, 19, 21, 32, 33, 35, 49, 104, 105, 108, 133, 135, 149, 183, 201-203, 210, 220, 230, 231, 238, 291, 303
track_spd.. 46, 47, 58, 59, 107, 108, 206, 292, 301, 303
trap_pos..65, 66, 107, 108, 143, 144, 182, 293, 301, 303
turn_off...34, 47, 108, 294, 295, 303
turn_on ... 34, 47, 108, 259, 263, 294, 295, 303
unlock ...46, 47, 68, 78, 89, 108, 152, 233, 285, 296, 303
vel_ccw... 46, 47, 59, 108, 240, 297, 298, 303
vel_cw... 46, 47, 59, 108, 240, 297, 298, 303
write ... 27, 31, 90, 92, 97-99, 108, 110, 112, 126, 133, 178, 201, 210, 220, 234, 238, 299, 303

IB-11C001

 INDUSTRIAL
 INDEXING SYSTEMS
 INC.

 626 FISHERS RUN
 VICTOR, NEW YORK 14564

 (585) 924-9181
 FAX: (585) 924-2169

 PRINTED IN USA
 © 1995

	TABLE OF CONTENTS
	1.0 INTRODUCTION
	1.1 OVERVIEW
	1.2 MANUAL CONVENTIONS

	2.0 INSTALLATION
	2.1 HARDWARE CONFIGURATION
	2.2 INSTALLATION
	2.2.1 DUAL FLOPPY DISK SYSTEM
	2.2.2 HARD DISK SYSTEM

	2.3 CONFIGURATION
	2.3.1 SYSTEM CONFIGURATION
	2.3.2 COLOR CONFIGURATION

	3.0 MPEDIT - MACRO PROGRAM EDITOR
	3.1 INTRODUCTION
	3.2 FILE MAINTENANCE
	3.3 THE EDITING PROCESS
	3.4 SPECIAL KEYBOARD KEYS
	3.5 FUNCTION KEY FUNCTIONS
	3.5.1 COPY/EXTRACT
	3.5.2 PASTE
	3.6.3 SEARCH
	3.6.4 REPLACE
	3.6.5 APPEND FILE
	3.6.6 FUNCTION DESCRIPTION
	3.6.7 QUIT NO SAVE
	3.6.8 EXIT AND SAVE
	3.6.9 GO TO LINE
	3.6.10 DISP ERRORS
	3.6.11 NEXT ERROR
	3.6.12 INDENT
	3.6.13 PREVIEW FILE
	3.6.14 HELP
	3.6.15 OPPS
	3.6.16 SAVE POSITION
	3.6.17 BACK TO POSITION
	3.6.18 CLEAR LINE
	3.6.19 CLEAR DISPLAY

	4.0 MPCPL - MACRO PROGRAM COMPILER
	4.1 INTRODUCTION
	4.2 USING MPCPL
	4.3 MACROPROGRAM LINE FORMAT
	4.4 MACRO COMPILER OUTPUT FORMAT
	4.5 SPECIAL MPCPL INSTRUCTIONS

	5.0 MPDEBUG - MACRO PROGRAM DEBUGGER
	5.1 INTRODUCTION
	5.2 USING MPDEBUG
	5.3 MPDEBUG CONVENTIONS
	5.4 MPDEBUG FUNCTIONS
	5.4.1 READ FUNCTIONS
	5.4.1.1 READ DATA
	5.4.1.2 READ DATA CONTINUOUS
	5.4.1.3 READ FLAG
	5.4.1.4 READ FLAG CONTINUOUS
	5.4.1.5 AXIS STATUS
	5.4.1.6 MACRO STATUS

	5.4.2 WRITE FUNCTIONS
	5.4.2.1 WRITE DATA
	5.4.2.2 WRITE DATA CONTINUOUS
	5.4.2.3 WRITE FLAG
	5.4.2.4 WRITE FLAG CONTINUOUS

	5.4.3 TRACE FUNCTIONS
	5.4.3.1 TRACE BEFORE
	5.4.3.2 TRACE ABOUT
	5.4.3.3 TRACE AFTER
	5.4.3.4 TRACE CURRENT
	5.4.3.5 STOP TRACE
	5.4.3.6 READ TRACE

	5.4.4 MSC COMMANDS
	5.4.4.1 STOP PROGRAM
	5.4.4.2 RESET
	5.4.4.3 SEND PROGRAM
	5.4.4.4 START PROGRAM
	5.4.4.5 PROM OPTIONS
	5.4.4.6 TEST MODE
	5.4.4.7 SET AUTOSTART

	5.4.5 VIEW FUNCTIONS
	5.4.5.1 SOURCE
	5.4.5.2 EQUATE TABLE
	5.4.5.3 LABEL TABLE
	5.4.5.4 CONSTANTS
	5.4.5.5 DATA TABLE
	5.4.5.6 LAST TRACE

	5.4.6 BLOCK FUNCTIONS
	5.4.6.1 READ DATA
	5.4.6.2 WRITE DATA

	6.0 INTRODUCTION TO MACROPROGRAMMING LANGUAGE
	6.1 BASIC CONCEPTS
	6.2 INSTRUCTION FORMAT
	6.3 COMMENTS
	6.4 BLANK LINES
	6.5 LABEL LINES

	7.0 COMPILER DIRECTIVES
	7.1 DESCRIPTION

	8.0 FLAGS
	8.1 DESCRIPTION

	9.0 ARITHMETIC INSTRUCTIONS
	9.1 OVERVIEW
	9.2 INTEGER ARITHMETIC
	9.3 ARRAY MANIPULATION
	9.4 BYTE OPERATIONS
	9.5 BIT ORIENTED OPERATIONS
	9.6 BUILT IN ARITHMETIC FUNCTIONS
	9.7 ARITHMETIC INSTRUCTION SUMMARY

	10.0 PROGRAM FLOW INSTRUCTIONS
	10.1 DESCRIPTION
	10.2 BRANCHING INSTRUCTIONS
	10.3 SUBROUTINE CONTROL
	10.4 THE SELECT STATEMENT
	10.5 PROGRAM FLOW INSTRUCTION SUMMARY

	11.0 MOTION INSTRUCTIONS
	11.1 OVERVIEW
	11.2 MSC CONVENTIONS AND MOTION TERMINOLOGY
	11.2.1 POSITION DATA
	11.2.2 SPEED (VELOCITY) DATA
	11.2.3 ACCELERATION DATA
	11.2.4 GLOBAL AND LOCAL ZEROES

	11.3 MOTION PREPARATION
	11.3.1 DIGITAL COMPENSATION
	11.3.1.1 THE P TERM (PROPORTIONAL GAIN)
	11.3.1.2 THE I TERM (INTEGRAL)
	11.3.1.3 THE D TERM (DIFFERENTIAL)

	11.3.2 VELOCITY GAIN

	11.4 VELOCITY CONTROL INSTRUCTIONS
	11.5 POSITIONING INSTRUCTIONS
	11.6 PIECEWISE PROFILES
	11.6.1 DESCRIPTION
	11.6.2 BUILDING PROFILE DATA TABLES
	11.6.3 PIECEWISE PROFILES AND MASTER SLAVE

	11.7 READING CONTROLLER POSITION

	12.0 INTERRUPTS
	12.1 DESCRIPTION
	12.2 SOFTWARE INTERRUPTS
	12.3 HARDWARE INTERRUPTS
	12.4 INTERRUPT INSTRUCTIONS

	13.0 MASTER SLAVE CONCEPTS
	13.1 DESCRIPTION
	13.2 SIMPLE LOCK (ELECTRONIC GEARBOX)
	13.2.1 USEFUL FACTS ABOUT SIMPLE LOCK MODE

	13.3 LOCK METHODS FOR SIMPLE LOCK
	13.3.1 LOCK METHOD 1
	13.3.2 LOCK METHOD 4
	13.3.3 LOCK METHOD 6

	13.4 ELECTRONIC CAMS
	13.4.1 MASTER SCALING
	13.4.2 DATA SCALING
	13.4.3 IMPORTANT NOTES REGARDING ELECTRONIC CAMS
	13.4.4 CALCULATING ELECTRONIC CAMS

	13.5 ELECTRONIC CAM LOCK METHODS
	13.5.1 LOCK METHOD 0
	13.5.2 LOCK METHOD 5
	13.5.3 LOCK METHOD 8
	13.5.4 LOCK METHOD 9
	13.5.5 LOCK METHOD 10

	13.6 SAMPLE ELECTRONIC CAM APPLICATION
	13.7 PIECEWISE LOCK
	13.8 MASTER ANGLE BUS
	13.8.1 MASTER ANGLE BUS CAUTIONS

	13.9 FIBER OPTIC NETWORK
	13.10 MASTER SLAVE INSTRUCTIONS

	14.0 PROGRAMMABLE LIMIT SWITCHES
	14.1 DESCRIPTION
	14.2 MSC-850/MCF-850 AND MSC-250 PLS FUNCTIONS
	14.2.1 PROGRAMMING
	14.2.2 PROCESSING
	14.2.3 EXECUTION

	14.3 HIGH PERFORMANCE PROGRAMMABLE LIMIT SWITCH (MSC-850/HPL-850)
	14.3.1 THEORY OF OPERATION
	14.3.2 PROGRAMMING CONSIDERATIONS

	14.4 HPL-850 PROGRAMMING EXAMPLE #1
	14.5 HPL-850 PROGRAMMING EXAMPLE #2
	14.6 PROGRAMMABLE LIMIT SWITCH INSTRUCTIONS

	15.0 EXTENDED MEMORY OPERATIONS
	15.1 DESCRIPTION
	15.2 EXTENDED RAM MEMORY
	15.2.1 EXTENDED RAM MEMORY PROGRAMMING
	15.2.2 EXTENDED MEMORY LIMITATIONS

	15.3 EPROM MEMORY
	15.3.1 AUTOMATIC PROGRAM LOAD FROM EPROM
	15.3.2 EPROM STATUS CODES

	15.4 EPROM MANAGER INSTRUCTIONS

	16.0 ANALOG INPUT/OUTPUT
	16.1 DESCRIPTION
	16.2 CAPABILITIES
	16.3 ACM-850 FUNCTIONAL DESCRIPTION
	16.4 POWER ON STATES
	16.5 ACM-850 INSTRUCTIONS

	17.0 USER SERIAL PORTS
	17.1 DESCRIPTION
	17.2 SERIAL PORT INITIALIZATION
	17.3 IMPORTANT NOTES REGARDING SERIAL PORTS
	17.4 SERIAL INSTRUCTIONS

	18.0 INSTRUCTION REFERENCE
	analog_in
	analog_out (ACM-850)
	analog_out (ACR-850 or ACE-850 or ACY-850)
	analog_out (MSC-250 controller 4)
	analog_out (MSC-250 controller 1 and 2)
	analog_rt
	analog_zo
	begin_cam
	begin_data
	blk_io_in
	blk_io_out
	calc_cam_sum
	calc_unit_cam
	cam
	cam_data
	case
	close
	clr_all_swi
	clr_bit
	clr_flag
	clr_hi_scan
	clr_local
	clr_swi
	create
	data
	declare
	default
	digi_comp
	dim
	disable_hwi
	disable_swi
	drive_off
	drive_on
	enable_hwi
	enable_swi
	end_cam
	end_data
	end_select
	equ
	exec_profile
	exit_select
	f_decel
	find_mrk_ccw
	find_mrk_cw
	find_tm_ccw
	find_tm_cw
	get_act_spd
	get_angle
	get_angle (MSC-850/HPL-850)
	get_cam_cnt
	get_cam_end
	get_cam_ptr
	get_cam_strt
	get_cam_sum
	get_com
	get_fol_err
	get_for_ang
	get_map
	get_map_stat
	get_mcf
	get_pls_mask
	get_pls_out
	get_pq_space
	get_pos
	get_pstat
	get_space
	get_status
	get_t_mark
	get_time
	get_trap_pos
	get_volume
	gosub
	goto
	if
	if_bit_clr
	if_bit_set
	if_char
	if_flag_off
	if_flag_on
	if_io_off
	if_io_on
	if_no_char
	if_stat_off
	if_stat_on
	if_tmr_off
	if_tmr_on
	incr_com
	index
	initialize
	input
	integer
	jog_ccw
	jog_cw
	l_track_spd
	let
	let_byte
	load
	lock
	master
	msc_type
	no_op
	offset_master
	open
	over_draw
	port_set
	position
	prep_profile
	preset
	preset (MSC-850/HPL-850)
	print
	print_num
	rand_int
	ratio
	read
	read_offset
	restart_at
	return_sub
	save
	select
	set_ac_dc
	set_acy_cnt (ACY-850)
	set_bit
	set_cam_ptr
	set_flag
	set_gl_ccw
	set_gl_ccw (HPL-850)
	set_gl_cw
	set_gl_cw (HPL-850)
	set_hi_scan
	set_home (ACY-850)
	set_local
	set_local (HPL-850)
	set_map
	set_mcf (MCF-850)
	set_mcf (HPL-850)
	set_mcf (ACR-850 or ACE-850 or ACY-850)
	set_mcf (MSC-250 controller 3)
	set_mcf (MSC-250 controller 1 and 2)
	set_offset
	set_ovd_mode
	set_pls_ang (MCF-850)
	set_pls_ang (HPL-850)
	set_pls_ang (MSC-250)
	set_pls_cnt (MCF-850)
	set_pls_mask
	set_pls_time
	set_speed
	set_swi_mask
	set_tmr
	set_trig_cam
	set_trig_pw
	set_vgain
	stop_input
	swi_if_off
	swi_if_on
	switch_cam
	sys_fault
	sys_return
	test_mode
	text
	track_spd
	trap_pos
	turn_off
	turn_on
	unlock
	vel_ccw
	vel_cw
	write

	APPENDIX A MACROPROGRAM INSTRUCTION LISTING
	APPENDIX B CUSTOM SERIAL PORT CONFIGURATION FOR THE MSC SOFTWARE TOOLKIT
	GLOSSARY OF TERMS
	INDEX

