
DIGITAL INCREMENTAL MOTION DEVICES AUGUST 1993

DIGITAL INCREMENTAL MOTION DEVICES

USER'S GUIDE

INDU	ISTRIAL INDEXI	NG SYSTEMS, Inc.
	Revision - 0	
	Revision - O	
Propriet	any information of Indus	strial Indexing Systems, Inc. furnished for customer use only.

Proprietary information of Industrial Indexing Systems, Inc. furnished for customer use only No other uses are authorized without the prior written permission of Industrial Indexing Systems, Inc.

ER-6020

ERRATA SHEET, IB-18B003

SEPTEMBER 1994

Date	Rev.	ECN No.	DR	СНК	СНК
05/17/94	А	ECN-94-129 (See Note 1)	KY	EB	WES
06/02/94	В	ECN-94-134 (See Note 2)	DAD		
07/28/94	С	ECN-94-204 (See Note 3)	KY	ELS	
09/15/94	D	ECN-94-244 (See Note 4)	KY	CA	
09/21/94	E	ECN-94-248 (See Note 5)	KY	СА	
09/26/94	F	ECN-94-229 (See Note 6)	KY	СА	

Notes:

Tel: (585) 924-9181

- 1) Appendix B, added Drive Setup SU-053004. Appendix E, removed cable drawing C-463YYYRA and replaced with C-463YYYRB.
- 2) Appendix E, removed cable drawing C-673YYYRO and replaced with C-673YYYRA.
- 3) Appendix E, added cable drawing C-470YYY.
- Appendix A, added drawings SERVOPRO-D and IC-253001. Appendix B, added SU-053008.
- 5) Appendix B, added SU-053002.
- 6) Appendix A, replaced SERVOPRO-D Rev. 0 with Rev. A.

INDUSTRIAL INDEXING SYSTEMS, Inc. 626 Fishers Run

Victor, New York 14564

Fax: (585) 924-2169

Proprietary information of Industrial Indexing Systems, Inc. furnished for customer use only. No other uses are authorized without the prior written permission of Industrial Indexing Systems, Inc.

TABLE OF CONTENTS

SECTION 1 - AC SERVO DRIVES

SECTION 2 - APPENDICES

- Appendix A Electrical Connection
- Appendix B Drive Setup
- Appendix C PWRPAK[™] Specifications
- Appendix D PWRPAK[™] Dimensions and Connections
- Appendix E Connecting Cables

CONTENTS

1. RATINGS AND SPECIFICATIONS / 1

- 1.1 RATINGS AND SPECIFICATIONS OF M SERIES AC SERVOMOTORS / 1
- 1.2 RATINGS AND SPECIFICATIONS OF F SERIES AC SERVOMOTORS / 3
- 1.3 RATINGS AND SPECIFICATIONS OF G SERIES AC SERVOMOTORS / 5
- 1.4 RATINGS AND SPECIFICATIONS OF S SERIES AC SERVOMOTORS / 7
- 1.5 RATINGS AND SPECIFICATIONS OF D SERIES AC SERVOMOTORS / 9
- 1. 6 RATINGS AND SPECIFICATIONS OF Servopack / 11
- 2. TYPE DESIGNATION / 13

3. LIST OF STANDARD COMBINATION / 15

4. CHARACTERISTICS / 19

- 4. 1 OVERLOAD CHARACTERISTICS / 19
- 4. 2 STARTING AND STOPPING TIME / 20
- 4. 3 ALLOWABLE FREQUENCY OPERATION / 21
- 4. 4 SERVOMOTOR FREQUENCY / 23
- 4.5 MOTOR SPEED-REFERENCE INPUT CHARACTERISTICS / 23
- 4. 6 MOTOR MECHANICAL CHARACTERISTICS / 24

5. CONFIGURATION / 27

- 5.1 CONNECTION DIAGRAM / 27
- 5. 2 MAIN CIRCUIT TERMINALS / 28
- 5. 3 APPLICABLE RECEPTACLES / 28
- 5. 4 CONNECTOR TERMINAL (1CN) FOR I/0 SIGNAL / 29
- 5. 5 CONNECTOR TERMINAL (2CN) FOR OPTICAL ENCODER CONNECTION / 38
- 5. 6 INTERNAL BLOCK DIAGRAM / 40

6. OPERATION / 41

- 6.1 POWER ON AND OFF / 41
- 6. 2 SPEED REFERENCE / 42
- 6.3 TORQUE CONTROL / 44
- 6. 4 EXTERNAL CURRENT LIMIT REFERENCE CIRCUIT [P-CL, N-CL] / 47
- 6.5 PROTECTIVE CIRCUIT / 49
- 6. 6 STATUS INDICATION / 51
- 6.7 PRECAUTIONS FOR APPLICATION / 53

- 6.8 PRECAUTIONS FOR OPERATION / 54
- 6.9 APPLICATION / 57
- 6. 10 MOTOR SPEED MEASUREMENT AND TORQUE REFERENCE / 58

7. USER CONSTANTS / 59

- 7.1 USER CONSTANT Cn-01 (MEMORY SWITCH) / 62
- 7. 2 USER CONSTANT Cn-03 TO Cn-12 (CONSTANT SETTING) / 64

8. MONITOR PANEL OPERATION / 65

- 8.1 SWITCH OPERATION / 65
- 8. 2 FUNCTIONS OF MONITOR PANEL / 66
- 8.3 STATUS INDICATION MODE / 67
- 8.4 SETTING MODE / 68
- 8.5 MONITOR MODE / 74
- 8. 6 ABNORMAL TRACEBACK MODE / 76

9. INSTALLATION AND WIRING / 78

- 9.1 RECEIVING / 78
- 9.2 INSTALLATION / 78
- 9.3 WIRING / 83

10. DIMENSIONS / 85

- 10. 1 SERVOMOTOR / 85
- 10.2 Servopack / 97
- 10. 3 PERIPHERAL EQUIPMENT / 98

11. TEST RUN / 100

- 11. 1 CHECK ITEMS BEFORE TEST RUN / 100
- 11.2 TEST RUN PROCEDURES / 100

12. ADJUSTMENT / 102

- 12. 1 CHARACTERISTICS AT THE TIME OF DELIVERY / 102
- 12. 2 READJUSTMENT / 103

13. INSPECTION AND MAINTENANCE / 104

- 13.1 AC SERVOMOTOR / 104
- 13. 2 Servopack / 104

14. TROUBLESHOOTING GUIDE / 105

- 14.1 SERVOMOTOR / 105
- 14.2 Servopack / 106

— i —

INDEX

	Subject	hapter	Section	Page
Α	ABNORMAL TRACEBACK MODE	8	8.6	76
~	AC SERVOMOTOR	13	13.1	104
	AC Servomotor	9	9.2.1	78
	AD.ILISTMENT	12		102
	ALLOWABLE FREQUENCY OF OPERATION	4	4.3	21
	Allowable Radial Load and Thrust Load	4	4.6.2	24
	Applicable Cables	5	5.5.2	38
	APPLICABLE RECEPTACLES	5	5.3	28
	APPLICATION	6	6.9	57
	Auxiliary Input Circuit (±2 to ±10V)	6	6.2.4	43
С	CHARACTERISTICS AT THE TIME OF DELIVERY	12	12.1	102
•	CHARACTERISTICS	4	·····	100
	CHECK ITEMS BEFORE TEST RUN	11		100
	Clearing Abnormal Traceback Data	ö	0.4.0	27
	CONFIGURATION			
	CONNECTION DIAGRAM	5	5.1	27
	Connection for Reverse Motor Bunning	6	6.9.1	57
	Connector 1CN Layout and Connection of Servopack	5	5.4.1	29
	Connector Layout	5	5.5.1	
	CONNECTOR TERMINAL (2CN) FOR OPTICAL ENCODER CONNECTION	5	5.5	38
	CONNECTOR TERMINAL (1CN) FOR I/O SIGNAL	5	54	29
	CONNECTOR TERMINAL (TCN) FOR I/O SIGNAL	6	643	48
D	D Series	10	10.1.4	93
	DIMENSIONS in mm (inches)	10		85
	Direction of Botation	4	4.6.4	25
	Examples of Troubleshooting for Defective Wiring or Parts	14	14.2.2	108
	Examples of Troubleshooting for Incomplete Adjustment			
	EXTERNAL CURRENT LIMIT REFERENCE CIRCUIT [P-CL, N-CL]	6	6.4	47
F	F Series	10	10.1.2	87
	FUNCTIONS OF MONITOR PANEL			
G	G Series	10	10.1.3	90
	Handling of Speed Reference Input Terminal			
н	Handling of Speed Reference Input Terminal	0 6	0.2.3	53
	High Voltage Line	U		
1	Impact Resistance	4	4.6.5	26
	Input Circuit	5	5.4.3	
	Input Signal and Method of Application	5	5.4.2	31
		13		104
	Inspection during Test Run	11	11.2.3	101
	INSTALLATION AND WIRING			
	INSTALLATION AND WRING	9	9.2	78
	INSTALLATION	5	5.6	40
J	Jogging Function			
L	LED Indication (7-segment) for Troubleshooting	14	14.2.1	106
-	LIST OF STANDARD COMBINATION	3		15
	Load Inertia (JL)	6	6.7.2	53
М	M Series	10 F		
	MAIN CIRCUIT TERMINALS	5 1		
	Mechanical Specifications	4 1	4.0.3 Леі	25
	Mechanical Strength	4 E		
	Method of Connection			
	Method of Giving External Current Limit Reference	6	6.4.1	47
	Minus Load	6	6.7.1	53
		8	8.5	
	Monitor Papel Controlled Operation Mode Selection and Operating Procedure	8	8.4.3	70
	MONITOR PANEL OPERATION	8		65

INDEX (Cont'd)

	Subject Ch	apter S	ection	Page
М	MOTOR MECHANICAL CHARACTERISTICS MOTOR SPEED MEASUREMENT AND TORQUE REFERENCE	6	6.10	. 58
N	Noise Treatment	6	6.8.1	. 54
0	Operation OPERATION Output Circuit OVERLOAD CHARACTERISTICS	5 4	5.4.5 4.1	. 35 . 19
Ρ	PERIPHERAL EQUIPMENT in mm (inches) Power Line Protection Power Loss POWER ON AND OFF	6 6	6.8.2 9.3.3 6.1 6.7	84 41 53
	PRECAUTIONS FOR OPERATION Preparation of Operation PROTECTIVE CIRCUIT	11	6.5	. 49
R	Rated Current and Cable Size RATINGS AND SPECIFICATIONS OF D SERIES AC SERVOMOTORS RATINGS AND SPECIFICATIONS OF F SERIES AC SERVOMOTORS RATINGS AND SPECIFICATIONS OF G SERIES AC SERVOMOTORS RATINGS AND SPECIFICATIONS OF M SERIES AC SERVOMOTORS	1 1 1 1	1.2 1.2 1.3 1.1	9 3 5 1
	RATINGS AND SPECIFICATIONS OF S SERIES AC SERVOMOTORS RATINGS AND SPECIFICATIONS OF Servopack RATINGS AND SPECIFICATIONS Ratings Ratings	1 1 1 1	1.6 1.1.1 1.2.1	1 1 3
	Ratings Ratings Ratings READJUSTMENT RECEIVING	1 1 12	. 1.4.1 . 1.5.1 . 12.2	9 103
S	S Series		. 8.1 . 4.4 . 10.1 . 11.1.1 . 14.1 . 10.2 . 11.1.2	65 23 85 100 105 97 100
	Servopack	14	. 14.2	106
	Servopack Set Voltage and Current Limit Values SETTING MODE Soft Start Function Specifications of Connector Terminal (1CN) for Input/Output Signal	8 6 5	. 8.4 . 6.2.6 . 5.3.1	68 44 28
	Specifications of Connector Terminal (2CN) for Encoder Speed Reference Circuit Speed Reference Offset Adjustment SPEED REFERENCE	8 8	. 8.4.4 . 6.2	72 42
	STARTING AND STOPPING TIME STATUS INDICATION MODE	4	. 4.2 . 8.3	20 67

Sec.

1. RATINGS AND SPECIFICATIONS

1.1 RATINGS AND SPECIFICATIONS OF M SERIES AC SERVOMOTORS

1.1.1 Ratings

Time Rating: Continuous Insulation: Class F Isolation Voltage: 1500 VAC, one minute Insulation Resistance: 500 VDC, $10M\Omega$ or more Enclosure: Totally-enclosed, self-cooled (Equivalent to IP-55 exclusive shaft opening) Ambient Temperature: 0 to $+40^{\circ}C$ Ambient Humidity: 20% to 80% (non-condensing)
Vibration: 15μm or below
Finish in Munsell Notation: N1.5
Excitation: Permanent magnet
Mounting: Flange mounted
Drive Method: Direct drive

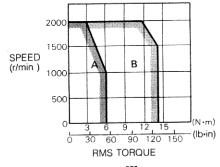
Motor 1	ype USAMED-	03B 1	06B 1	09B 2	12B 2	20B 2	30B 2	44B 2
Rated Output*	kW (HP)	0.3 (0.4)	0.6 (0.8)	0.9 (1.2)	1.2 (1.6)	2.0 (2.7)	3.0 (4.0)	4.4 (5.9)
Rated Torque*	N∙m (lb∙in)	2.84 (25)	5.68 (50)	8.63 (76)	11.5 (102)	19.1 (169)	28.4 (252)	41.9 (372)
Continuous Max Torque*	N∙m (Ib∙in)	2.94 (26)	5.88 (52)	8.82 (78)	11.8 (104)	21.6 (191)	32.3 (286)	46.1 (408)
Instantaneous Peak Torque*	N∙m (Ib∙in)	7.17 (63)	14.1 (125)	19.3 (171)	28.0 (248)	44.0 (390)	63.7 (564)	91.1 (807)
Rated Current*	A	3.0	5.8	7.6	11.7	18.8	26	33
Rated Speed*	r/min				1000			
Instantaneous Max Speed*	r/min		1500					
Torque Constant	N∙m/A (lb∙in/A)	1.01 (8.9)	1.04 (9.2)	1.21 (10.7)	1.02 (9.0)	1.07 (9.5)	1.16 (10.2)	1.33 (11.8)
Moment of Inertia J_M (=GD ² /4)	kg•m²×10 ⁻⁴ (lb•in•s²×10 ⁻³)	13.5 (12.0)	24.3 (21.5)	36.7 (32.5)	58.0 (51.2)	110 (97.2)	143 (126.7)	240 (212.6)
Power Rate*1	kW/s	6.0	13.3	20.3	22.7	33.2	57.0	74.0
Inertia Time Constant ms		12.8	6.3	4.4	6.0	5.2	3.5	3.6
Inductive Time Constant	ms	2.7	5.1	6.5	10.4	12.9	15.3	16.2
Insulation					Class F			

Table 1.1 Ratings and Specifications of M Series AC Servomotors

*1: Values when servomotor is combined with Servopack and the armature winding temperature is 20°C. Shown are normal (TYP) values above.

*2: The blank []] of motor type depends on class of detectors.

Standard:2 (8192 pulses/rev)Semi-Standard:3 (2048 pulses/rev)

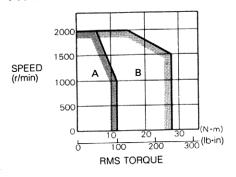

Optical encoder is used as a detector.

Note: The power supply units for brake:

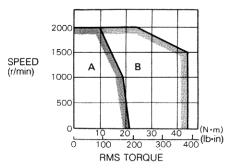

Input 100 VAC, Output 90 VDC: Type OPR 109 F
Input 200 VAC, Output 90 VDC: Type OPR 109 A
For details, see par. 10.3 (2).

1.1.2 Torque-Speed Characteristics

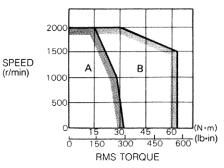
- TYPE USAMED-03B⊡1 2000 1500 SPEED (r/min) В А 1000 500 (N•m) C 8 1 (lb·in) 60 ŏ 40 RMS TORQUE
- TYPE USAMED-06B⊡1

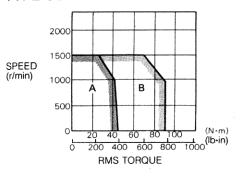


TYPE USAMED-09B[]2



• TYPE USAMED-12BE2


E.


TYPE USAMED-20B⊡2

• TYPE USAMED-30B[]2

• TYPE USAMED-44B[]]2

A: CONTINUOUS DUTY ZONE B: INTERMITTENT DUTY ZONE POWER SUPPLY: 200 V

1.2 RATINGS AND SPECIFICATIONS OF F SERIES AC SERVOMOTORS

1.2.1 Ratings

288

 Time Rating: Continuous
 Insulation: Class F
 Isolation Voltage: 1500 VAC, one minute
 Insulation Resistance: 500 VDC, 10MΩ or more
 Enclosure: Totally-enclosed, self-cooled
 (Equivalent to IP-55 exclusive shaft opening)

Ambient Temperature: 0 to +40°C

Ambient Humidity: 20% to 80% (non-condensing)
Vibration: 15μm or below
Finish in Munsell Notation: N1.5
Excitation: Permanent magnet
Mounting: Flange mounted
Drive Method: Direct drive

Motor	Type USAFED-	02C 1	03C 1	05C 1	09 1	13C 2	20C 2	30C 2	44C 2	
Item	*2			0.45	0.85	1.3	1.8	2.9	4.4	
Rated Output*	kW	0.15	0.3 (0.4)	(0.6)	(1.1)	(1.7)	(2.4)	(3.9)	(5.9)	
	(HP)	(0.2)	1.96	2.84	5.39	8.34	11.5	18.6	28.4	
Rated Torque*	N∙m (Ib∙in)	(8.7)	(17)	(25)	(48)	(74)	(102)	(165)	(252)	
	N•m	1.08	2.16	2.94	5.88	8.83	11.8	22.6	37.3	
Continuous Max Torque*	(lb•in)	(10)	(19)	(26)	(52)	(78)	(104)	(200)	(330)	
	N•m	2.91	5.83	8.92	15.2	24.7	34.0	54.1	76.2	
Instantaneous Peak Torque*	(lb•in)	(26)	(52)	(79)	(135)	(219)	(301)	(479)	(675)	
Rated Current*	А	3.0	3.0	3.8	6.2	9.7	15	20	30	
Rated Speed*		1500								
Instantaneous Max Speed	* r/min	2500								
	N•m/A	0.36	0.72	0.80	0.92	0.92	0.82	0.98	1.02	
Torque Constant	(lb•in/A)	(3.2)	(6.3)	(7.1)	(8.2)	(8.2)	(7.3)	(8.7)	(9.0)	
Moment of Inertia J _M (=GD ² / 4	$kg \cdot m^2 \times 10^{-4}$ (lb · in · s ² × 10 ⁻³)	1.3 (1.2)	2.06 (1.8)	13.5 (12.0)	24.3 (21.5)	36.7 (32.5)	58 (51.2)	110 (97.2)	143 (126.7)	
Power Rate*1	kW/s	7.4	18.3	6.0	12	18.9	22.7	31.5	57.0	
Inertia Time Constant	ms	3.9	2.5	10.9	6.0	4.4	5.9	5.2	3.7	
Inductive Time Constant	ms	3.4	4.3	3.2	5.2	6.1	10.4	13.0	15.2	
Insulation			Class F							

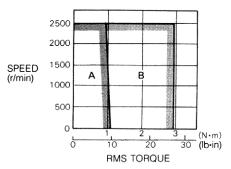
Table 1.2 Ratings and Specifications of F Series AC Servomotors

*1: Values when servomotor is combined with Servopack and the armature winding temperature is 20°C. Shown are normal (TYP) values above.

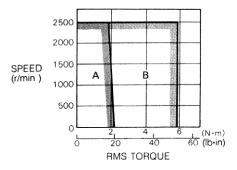
*2: The blank [] of motor type depends on class of detectors.

Standard: 2 (8192 pulses/rev) Semi-Standard: 3 (2048 pulses/rev)

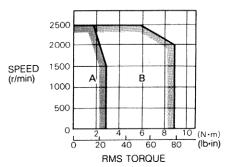
Optical encoder is used as a detector.

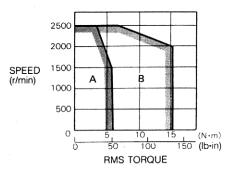

Note: The power supply units for brake:

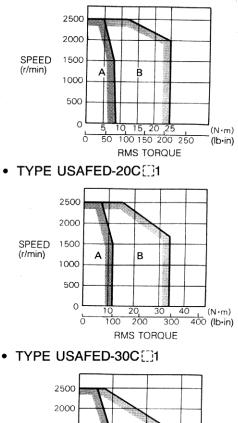
- Input 100 VAC, Output 90 VDC: Type OPR 109 F
- Input 200 VAC, Output 90 VDC: Type OPR 109 A

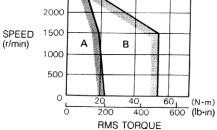

For details, see par. 10.3 (2).

1.2.2 Torque-Speed Characteristics

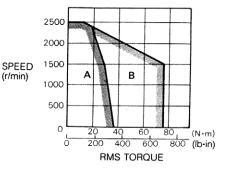

• TYPE USAFED-02C[]1


TYPE USAFED-03C[]1


• TYPE USAFED-05C[]1



TYPE USAFED-09C□1



TYPE USAFED-13C[]1

TYPE USAFED-44C[]1

A: CONTINUOUS DUTY ZONE B: INTERMITTENT DUTY ZONE POWER SUPPLY: 200 V

1.3 RATINGS AND SPECIFICATIONS OF G SERIES AC SERVOMOTORS

1.3.1 Ratings

1.2

Time Rating: Continuous Insulation: Class F Isolation Voltage: 1500 VAC, one minute Insulation Resistance: 500 VDC, $10M\Omega$ or more Enclosure: Totally-enclosed, self-cooled (Equivalent to IP-55 exclusive shaft opening) Ambient Temperature: 0 to $+40^{\circ}$ C Ambient Humidity: 20% to 80% (non-condensing)
Vibration: 15μm or below
Finish in Munsell Notation: N1.5
Excitation: Permanent magnet
Mounting: Flange mounted
Drive Method: Direct drive

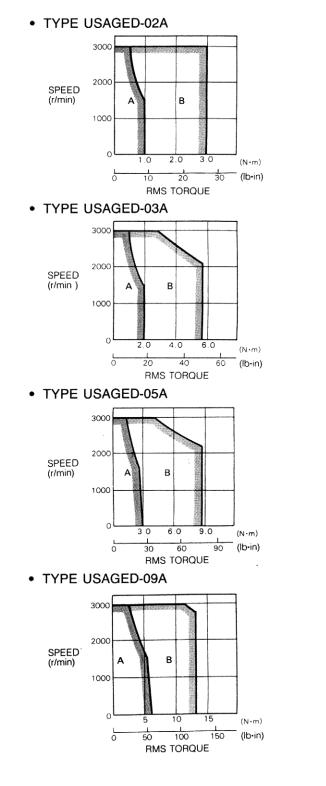
	ype USAGED-	02A 1	03A 1	05A 1	09 A 1	13A 1	20A 2	30A 2	44A 2	
Item	*2								4.4	
Rated Output*	kW	0.15	0.3	0.45	0.85	1.3	1.8	2.9	4.4	
	(HP)	(0.2)	(0.4)	(0.6)	(1.1)	(1.7)	(2.4)	(3.9)	(5.9)	
Rated Torque*	N∙m	0.98	1.96	2.84	5.39	8.34	11.5	18.6	28.4	
Hated Tolque	(lb•in)	(8.7)	(17)	(25)	(48)	(74)	(102)	(165)	(252)	
Continuous Max Torque*	N•m	1.08	2.16	2.94	5.88	8.83	11.8	22.6	37.3	
Continuous Max Torque*	(lb•in)	(10)	(19)	(26)	(52)	(78)	(104)	(200)	(330)	
	N•m	2.9	5.83	8.92	13.3	23.3	28.0	45.1	66.2	
Instantaneous Peak Torque*	(lb•in)	(26)	(52)	(79)	(118)	(207)	(248)	(339)	(587)	
Rated Current*	A	3.0	3.0	3.8	7.6	11.7	19	26	33	
Rated Speed*	r/min		1500							
Instantaneous Max Speed*	r/min	3000								
	N•m/A	0.36	0.72	0.8	0.8	0.83	0.67	0.80	0.95	
Torque Constant	(lb•in/A)	(3.2)	(6.3)	(7.1)	(7.1)	(7.4)	(5.9)	(7.1)	(8.4)	
	, kg•m²×10⁻⁴	1.3	2.06	13.5	24.3	36.7	58	110	143	
Moment of Inertia $J_M = GD^2/4$) (Ib•in•s ² ×10 ⁻³)	(1.2)	(1.8)	(12.0)	(21.5)	(32.5)	(51.2)	(97.2)	(126.7)	
Power Rate*1	kW/s	7.4	18.3	6.0	12	18.9	22.7	36.5	57.0	
Inertia Time Constant	ms	4.5	2.5	10.9	6.1	4.3	5.8	5.2	3.4	
Inductive Time Constant	ms	3.4	4.3	3.2	5.2	6.7	10.6	13.2	15.9	
Insulation					Cla	ss F				

Table 1.3 Ratings and Specifications of G Series AC Servomotors

*1: Values when servomotor is combined with Servopack and the armature winding temperature is 20°C. Shown are normal (TYP) values above.

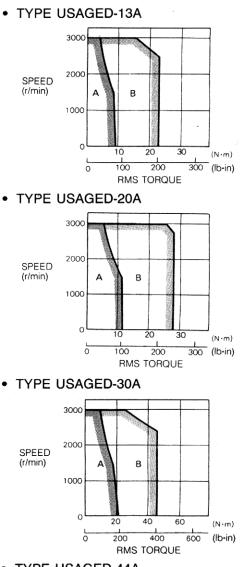
*2: The blank [] of motor type depends on class of detectors.

Standard:2 (8192 pulses/rev)Semi-Standard:3 (2048 pulses/rev)

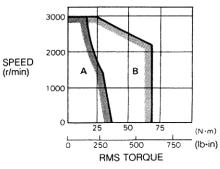

Optical encoder is used as a detector.

Note: The power supply units for brake:

Input 100 VAC, Output 90 VDC: Type OPR 109 F
Input 200 VAC, Output 90 VDC: Type OPR 109 A


For details, see par. 10.3 (2).

1.3.2 Torque-Speed Characteristics



ž

f.

TYPE USAGED-44A

A: CONTINUOUS DUTY ZONE B: INTERMITTENT DUTY ZONE POWER SUPPLY: 200 V

1.4 RATINGS AND SPECIFICATIONS OF S SERIES AC SERVOMOTORS

1.4.1 Ratings

-25

Time Rating: Continuous **Insulation:** Class B (Types USASEM-02AE32, -03A[]2, -05A[]2) Class F (Types USASEM-08A[]]1, -15A[]1, -30A[]1) **Isolation Voltage:** 1500 VAC, one minute Insulation Resistance: 500 VDC, $10M\Omega$ or more Enclosure: Totally-enclosed, self-cooled

Ambient Temperature: $0 \text{ to } +40^{\circ}\text{C}$ Ambient Humidity: 20% to 80% (non-condensing) Vibration: $15\mu m$ or below Finish in Munsell Notation: N1.5 **Excitation:** Permanent magnet Mounting: Flange mounted Drive Method: Direct drive

Motor 1	Type USASEM- * 2	02A 2	03A 2	05A 2	08A 1	15A 1	30A 1		
Rated Output*	kW (HP)	0.15 (0.2)	0.31 (0.4)	0.46 (0.6)	0.77 (1.0)	1.54 (2.1)	3.08 (4.1)		
Rated Torque*	N∙m (lb∙in)	0.49 (4.3)	0.98 (8.7)	1.47 (13)	2.45 (22)	4.90 (43)	9.80 (87)		
Continuous Max Torque*	N∙m (lb∙in)	0.57 (5.0)	1.18 (10)	1.67 (15)	3.33 (30)	6.17 (55)	12.2 (108)		
Instantaneous Peak Torque*	N∙m (Ib∙in)	1.47 (13)	2.94 (26)	4.02 (36)	7.35 (65)	13.7 (122)	29.0 (257)		
Rated Current*	Α	2.1	3.0	4.2	5.3	10.4	19.9		
Rated Speed*	r/min	3000							
Instantaneous Max Speed*	r/min	4000							
Torque Constant	N∙m/A (lb∙in/A)	0.25 (2.19)	0.35 (3.10)	0.37 (3.25)	0.51 (4.49)	0.50 (4.43)	0.52 (4.64)		
Moment of Inertia J _M (=GD ² / 4)	0.13 (0.11)	0.51 (0.45)	0.75 (0.67)	2.85 (2.53)	3.3 (2.88)	5.74 (5.09)		
Power Rate*1	kW/s	18.5	18.9	28.9	21	74	167		
Inertia Time Constant	ms	1.8	2.2	1.8	1.9	0.7	0.4		
Inductive Time Constant	ms	1.5	2.7	3.1	6.2	13	26		
Insulation		Class B Class F							

Table 1.4 Ratings and Specifications of S Series AC Servomotors

* Values when servomotor is combined with Servopack and the armature winding temperature is 100°C. Shown are normal (TYP) values above.

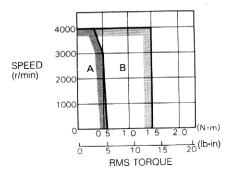
+ Values when servomotor is combined with Servopack and the armature winding temperature is 20°C. Shown are normal (TYP) values above.

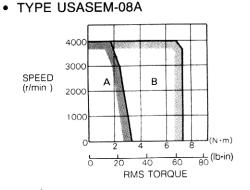
The blank []] of motor type depends on class of detectors.

Standard: 3 (2048 pulses/rev)

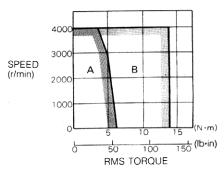
Semi-Standard: 4 (2500 pulses/rev)

Optical encoder is used as a detector.

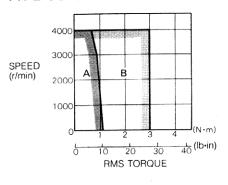

Note: The power supply units for brake:

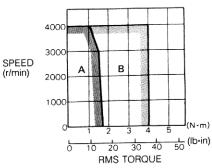

Input 100 VAC, Output 90 VDC: Type OPR 109 F (DP8401002-2)
Input 200 VAC, Output 90 VDC: Type OPR 109 A (DP8401002-1)

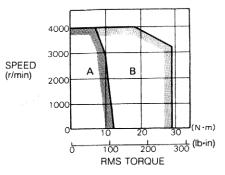
For details, see apr.10.3 (2)


1.4.2 Torque-Speed Characteristics

• TYPE USASEM-02A




• TYPE USASEM-15A


• TYPE USASEM-03A

• TYPE USASEM-30A

A: CONTINUOUS DUTY ZONE B: INTERMITTENT DUTY ZONE POWER SUPPLY: 200 V

1.5 RATINGS AND SPECIFICATIONS OF D SERIES AC SERVOMOTORS

1.5.1 Ratings

25

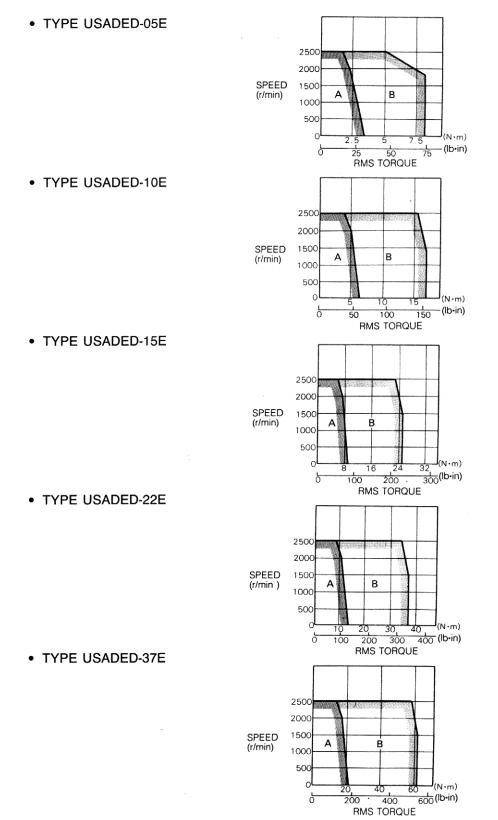
Time Rating: Continuous Insulation: Class F Isolation Voltage: 1500 VAC, one minute Insulation Resistance: 500 VDC, $10M\Omega$ or more Enclosure: Totally-enclosed, self-cooled Ambient Temperature: 0 to $+40^{\circ}$ C Ambient Humidity: 20% to 80% (non-condensing)
Vibration: 15µm or below
Finish in Munsell Notation: N1.5
Excitation: Permanent magnet
Mounting: Flange mounted
Drive Method: Direct drive Holding Brake Provided.

ltom	Motor T	ype USADED-	05E 3	10E 3	15E 3	22E 3	37E 3			
Item		kW	0.5	1.0	1.5	2.2	3.7			
Rated Output*	s	(HP)	(0.67)	(1.3)	(2.0)	(2.9)	(5.0)			
		N•m	2,35	4.80	7.16	10.5	17.7			
Rated Torque*	•	(lb•in)	(21)	(43)	(63)	(93)	(156)			
Continuous M	av Tarauat	N•m	3.43	6.37	8.82	13.7	21.6			
Continuous Ma	ax Torque	(lb•in)	(30)	(56)	(78)	(122)	(191)			
Instantaneous P	Peak Torque*	N∙m	8.24	16.9	25.1	36.8	61.8			
instantaneous r	eak loique .	(lb•in)	(73)	(149)	(222)	(326)	(547)			
Rated Current	•	А	3.5	7.9	12.6	16.6	23.3			
Rated Speed*		r/min			2000					
Instantaneous	Peak Speed*	r/min	2500							
Taxaua Canata		N•m/A	0.83	0.69	0.64	0.71	0.82			
Torque Consta	ant	(lb•in/A)	(7.38)	(6.07)	(5.64)	(6.25)	(7.29)			
Moment of Inerti	$a_{\rm b} = GD^2/4$	kg∙m²×10 ⁻⁴	21, 13 [†]	32, 24	62, 59†	83, 80†	148, 145†			
		(lb•in•s²×10⁻³)	(18.2, 11.3†)	(28.6, 21.5†)	(54.7, 52.1†)	(73.8, 71.1 [†])	(131, 128†)			
Power Rate*1		kW/s	2.7 4.4†	7.3 9.7†	8.2 8.6†	13 14†	21 22†			
Lessie Time O			18	7.8	7.1	6.2	4.3			
Inertia Time C	onstant	ms	11†	5.9†	6.8†	6.0†	4.2†			
Inductive Time	e Constant	ms	4.4	6.9	9.4	11	15			
Insulation					Class F					
Holding	Power Supply VDC				90					
Holding Brake	Static Functi Torque	on N∙m (Ib∙in)	8.8 (7		21.56 (191)					
Approx Weight kg (lb)			17, 16† (37.5, 35.3†)	19, 18† (41.9, 39.7†)	30, 27† (66.2, 59.5†)	32, 29† (70.6, 64†)	39, 36† (86.0, 79.4†)			

Table 1.5 Ratings and Specifications of D Series AC Servomotors

* Values when servomotor is combined with Servopack and the armature winding temperature is 20°C. Shwon are normal (TYF) values above.

+ Values show those of D series without holding brake.


The blank [] of motor type depends on class of detectors. Standard: 2 (2048 pulses/rev) Semi-Standard: 3 (8192 pulses/rev)

Optical encoder is used as a detector.

Brake power supply specifications: 2 types.

Input: 100 VAC Output: 90 VDC; OPR 109 F Type
Input: 200 VAC Output: 90 VDC; OPR 109 A Type
For details, refer to Par. 10.3.

1.5.2 Torque-Speed Characteristics

£ 1

A: CONTINUOUS DUTY ZONE B: INTERMITTENT DUTY ZONE

1.6 RATINGS AND SPECIFICATIONS OF Servopack

33

		Servonack	Type CACR-	SB02BE	SBO3BE	SR05BE	SB07BE	SBIOBE	SB15BE	SR20BE	SB30BE	SB44BF
			L\\/	0.2	0.3	0.5	0.7	1.0	1.5	2.0	3.0	4.4
Ma	Max Motor Output (HP)			(0.3)	(0.4)	(0.67)	(0.94)	(1.34)	(2.0)	(2.7)	(4.1)	(5.9)
		Applicab	le Optical Encoder			rd:8192p				2048puls	T	
			Type USAMED-	-	03B2		06B2	09B2	12B2	20B2	30B2	44B2
		AC Servomotor	Output kW (HP)	-	0.3 (0.4)	_	0.6 (0.8)	0.9 (1.2)	1.2 (1.6)	2.0 (2.7)	3.0 (4.1)	4.4 (5.9)
	es	Servornotor	Rated Speed r/min		(0.4)) (44B2 : 1		1 1 1	()	(0.0)
	Series	Servopack Type CACR-			SR03BE12M	· <u> </u>	SR07BE12M			SR20BE12M	SR30BE12M	SR44BE12M
	Σ	Continuo Current	us Output Arms	_	3.0		5.8	7.6	11.7	18.8	26.0	33.0
		Max Out	put Current Arms	_	7.3		13.9	16.6	28.0	42.0	56.6	70.0
		Allowabl			67.5		122	184	334	550	715	1200
		$J_{L}(=GD_{L}^{2})$			(60)		(107.5)	(162.5)	(296)	(486)	(633.5)	(1063)
		Applicab	le Optical Encoder				buises/rev		13C2	2048puls 20C2	30C2	44C2
		AC	Type USAFED-	02C2 0.15	03C2 0.3	05C2 0.45		09C2 0.85	1.3	1.8	2.9	4402
		Servomotor	Output (HP)	(0.15	(0.4)	(0.6)	-	(1.1)	(1.7)	(2.4)	(3.9)	(5.9)
	es		Rated Speed r/min				1	500/2500				yan naga tipla (shan ku dhanani maran yan sa
	Series	Servopad	k Type CACR-	SR02BE12F	SR03BE12F	SR05BE12F		SR10BE12F	SR15BE12F	SR20BE12F	SR30BE12F	SR44BE12F
	Ľ.	Continuo Current	us Output Arms	3.0	3.0	3.8		6.2	9.7	15.0	20.0	30.0
			put Current Arms	8.5	8.5	11.0		17.0	27.6	42.0	56.5	77.0
		Allowable		6.5	10.3	67.5	_	122 (107.5)	184 (162.5)	334 (296)	550 (486)	715 (633.5)
		and the second se	/4) (Ib•in•s ² ×10 ⁻³) le Optical Encoder	(5.75)	(9) Standar	(60)				2048puls	, , ,	(033.3)
		Арріісар	Type USAGED-	02A2	03A2	05A2		09A2	13A2	2040pul3	30A2	44A2
		AC	FW.	0.15	0.3	0.45		0.85	1.3	1.8	2.9	4.4
ъ		Servomotor	Output (HP)	(0.2)	(0.4)	(0.6)		(1.1)	(1.7)	(2.4)	(3.9)	(5.9)
lot	Series		Rated Speed r/min				1	500/3000				
NOV		Servopac	k Type CACR-	SR02BE12G	SR03BE12G	SR05BE12G	_	SR10BE12G	SR15BE12G	SR20BE12G	SR30BE12G	SR44BE12G
Servomotor	თ	Current		3.0	3.0	3.8	_	7.6	11.7	19.0	26.0	33.0
		Max Output Current Arms		8.5	8.5	11.0		17.0				
		Allowable		6.5 (5.75)	10.3 (9)	67.5 (60)		122 (107.5)	184 (162.5)	290 (256)	475 (418)	715 (630)
			le Optical Encoder	(0.70)			ulses/rev			2500puls		(000)
		rippiloub	Type USASEM-	02A3	03A3	05A3	_	08A3	15A3		30A3	
		AC	Output kW	0.15	0.31	0.46		0.77	1.54		3.08	
	6	Servomotor	(пр)	(0.2)	(0.4)	(0.6)		(1.0)	(2.1)		(4.1)	
	eries		Rated Speed r/min	000005:00	000005400	000505100		3000/4000		1	000005400	
	S	Servopad	ck Type CACR-	SHU2BE13S	SR03BE13S	SH02BE13S		SR10BE13S			SR30BE13S	
	S	Current	us Output Arms	2.1	3.0	4.2		5.3	10.4	_	19.9	
			put Current Arms	6.0	8.5	11.0		15.6	28.0		56.5	
		Allowable		0.65 (0.55)	2.55 (2.25)	3.8 (3.35)	_	14.3 (12.65)	16.5 (14.4)		28.7 (25.4)	<u> </u>
			le Optical Encoder	(0.00)			oulses/rev			8192puls	and a state of the	
			Type USADED-			05E3			10E3	15E3	22E3	37E3
		AC	Output kW			0.5	_		1.0	1.5	2.2	3.7
	s	Servomotor	· (nr)			(0.67)			(1.34)	(2.0)	(2.9)	(4.9)
	Series	0	Rated Speed r/min				2	2000/2500) SR15BE13D	CDODETOD	SR30BE13D	CDAADE10D
		Servopac	k Type CACR-			SR05BE13D						
	۵	Current	us Output Arms	_	—	3.8			7.9	12.6	16.6	23.3
			put Current Arms	-	_	11.0	—		25.2	40.7	54.0	77.0
		Allowable	e kg•m ² ×10 ⁻⁴ /4) (lb•in•s ² ×10 ⁻³)	-	—	105 (91)		_	160 (143)	310 (273.5)	415 (369)	740 (655)

Table 1.6 Ratings and Specifications of Servopack

-11-

	Servor	oack Type	SR02BE	SR03BE	SR05BE	SR07BE	SR10BE	SR15BE	SR20BE	SR30BE	SR44BE	
ax M	Motor Out	put kW (HP)	0.2 (0.3)	0.3 (0.4)	0.5 (0.67)	0.7 (0.94)	1.0 (1.34)	1.5 (2.01)	2.0 (2.7)	3.0 (4.1)	4.4 (5.9)	
Τ	Power	Main Circuit	(ase 200 t						
	Supply	Control Circuit		ę	Single ph	ase 200 t	o 230 VA	C +10% 50	0/60 Hz*	1		
S	Control N	Aethod	Three-p			ectifier Tra					e Drive)	
tio	Feedbac	k		Op	otical end	oder (819			8 pulses/	rev)		
<u>i</u>	Ambient	Temperature	·			0	to 55°C*	B5 /				
Scif	Storage '	Temperature		-20°C to +85°C								
c Specifications	Humidity	and Storage			9	0% or les	-	ondensin	g)			
Basic	Vibration-res	istance/Impact-resistance					0.5G/2G					
B	Mounting	g Structure				Ba	se moun	ed				
	Approx V	(ui) ²				6.0 (13.2)					.0 5.4)	
	Speed C	ontrol Range*2					1:5000					
Itrol		Load Regulation 0 to 100%			+	-0.01% 0	r less at	rated r/m	iin			
Control	Speed*3 Regulation	Voltage Regula- tion ±10%		0%								
Speed		Temp. Regulation 25 ± 25C°		±0.1% or less at rated r/min								
	Frequence Charactr	cy Response istics				100	$Hz (J_L =$	J _M)				
		Rated Reference	Speed Control Mode ±6 VDC at rated r/min (forward run at plus reference)									
•	Reference -	Voltage	Torque Control Mode ±3 VDC at rated torque (forward torque generated at plus reference)									
	Input	Input Impedance	Approx 30kΩ									
		Circuit Time Constant	Approx 70μs ±12 VDC at rated r/min (forward run at plus reference)									
	Auxiliary	Reference Voltage		±12 \	/DC at r		and a second second second	the fact is the second s	plus refe	erence)		
2	Reference	Input Impedance			····		oprox 30					
a	Input*4	Circuit Time Constant			an ann an an an an an an an tha a bhailte.	A	oprox 70,	uS				
Signal	Built-in F Supply	Reference Power	\pm 12 VDC \pm 5%, \pm 30mA Output-able									
	Output	Output Form				Open Col			and the second se			
	(PG Pulse)	Dividing Ratio				2, 2048 (
	·	e Input Signal				N, P drive						
		e Output Signal	Se			, current			and the second design of the		rip	
		Current Limit				ent in ead					(rayor), allo malayor ha yang kalan ilak ya kilay	
	Dynamic		Op	erated at	main po	wer OFF,		rm, servo	o OFF, ov	ertravel,	etc.	
tions	Regenera						Provided		e			
1 i i i		le Load Inertia JL				Jp to 5 til	the second s	and the second	and the second se			
Š	Overtrave	el Prevention			and the state of the second of the local division of the second sec	p or slow	and the second se	the second se	the second se	1		
Built-in Funct	Protectio	'n	Communication error, over current(OC), MCCB trip(MCCB), Regenerative error(RG), overvoltage(OV), overload(OL), origin error, overrun, open phase detection, CPU error(CPU, A/D)									
Li I	Indicatio					5 figures					and the second s	
B	Monitor (the second s				±5%/100						
1	Other fur	nctions	Torque co	ontrol, zero	o cramp, s	oft start, b	rake inter	ock, rever	se turn co	nnection, JC	DG Operat	

Table 1.6 Ratings and Specifications of Servopack (Cont'd)

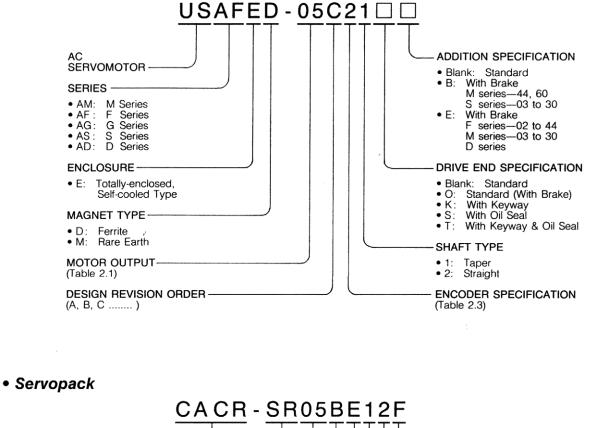
*1. Supply voltage should not exceed 230 V + 10% (253 V). If the voltage should exceed this value, a step down transformer is required.

*2. In the speed control range, the lowest speed is defined as the condition in which there is 100% load variation, but not stopped.

*****3 Speed regulation is generally defined as follows:

ŕ

Speed regulation - $\frac{\text{No load speed} - \text{Rated speed}}{\text{Rated speed}} \times 100 (\%)$


Motor speed may be changed by voltage variation or operational amplifier drift due to temperature. The ratio of this speed change to the rated speed represents the speed regulation due to voltage or temperature change.

- * 4. Used for application at rated reference voltage other than $\pm 6V$.
- ★ 5. When housed in a panel, the inside temperature must not exceed ambient temper ature range.
- * 6. When load JL exceeds applicable range, be sure to refer to 6.7.2. Load Inertia.
- *7. JOG operation with monitor switch.

2. TYPE DESIGNATION

• AC Servomotor

377

Servopack SERIES
SR: Speed
MOTOR OUTPUT
APPLICATION B: M, F, G, S, D Series
DESIGN REVISION
A, B, C
1: 200V, Analog
ENCODER SPECIFICATION
APPLICABLE MOTOR
 M: M Series F: F Series G: G Series S: S Series D: D Series

Table 2.1

			Motor Output		
	M Series	F Series	G Series	S Series	D Series
02		0.15kW(0.2HP)	0.15kW(0.2HP)	154W(0.2HP)	
03	0.3kW(0.4HP)	0.3kW(0.4HP)	0.3kW(0.4HP)	308W(0.4HP)	
05		0.45kW(0.6HP)	0.45kW(0.6HP)	462W(0.6HP)	0.5kW(0.67HP)
06	0.6kW(0.8HP)				
08				771W(10HP)	
09	0.9kW(1.2HP)	0.85kW(1.1HP)	0.85kW(1.1HP)		
10		gendingholden of 191	,		1.0kW(1.3HP)
12	1.2kW(1.6HP)		and the second		
13		1.3kW(1.7HP)	1.3kW(1.7HP)		
15				1540W(2.1HP)	1.5kW(2.0HP)
20	2.0kW(2.7HP)	1.8kW(2.4HP)	1.8kW(2.4HP)		
22					2.2kW(2.9HP)
30	3.0kW(4.1HP)	2.9kW(3.9HP)	2.9kW(3.9HP)	3080W(4.1HP)	
37					3.7kW(5.0HP)
44	4.4kW(5.9HP)	4.4kW(5.9HP)	4.4kW(5.9HP)		

Table 2.2

			Motor Output		
	M Series	F Series	G Series	S Series	D Series
02		0.15kW(0.2HP)	0.15kW(0.2HP)	0.15kW(0.2HP)	
03	0.3kW(0.4HP)	0.3kW(0.4HP)	0.3kW(0.4HP)	0.3kW(0.4HP)	
05		0.45kW(0.6HP)	0.45kW(0.6HP)	0.46kW(0.6HP)	0.5kW(0.67HP)
07	0.6kW(0.8HP)		Auto-salation and and		
10	0.9kW(1.2HP)	0.85kW(1.1HP)	0.85kW(1.1HP)	0.77kW(10HP)	nga
15	1.2kW(1.6HP)	1.3kW(1.7HP)	1.3kW(1.7 HP)	1.54kW(2.1HP)	1.0kW(1.3HP)
20	2.0kW(2.7HP)	1.8kW(2.4HP)	1.8kW(2.4HP)	an yan ku ngini na ku ngini	1.5kW(2.0HP)
30	3.0kW(4.1HP)	2.9kW(3.9HP)	2.9kW(2.4HP)	3.08kW(4.1HP)	2.2kW(2.9HP)
44	4.4kW(5.9HP)	4.4kW(5.9HP)	4.4kW(5.9HP)		3.7kW(5.0HP)

Table 2.3

į j

Motor Type	St	andard (pulses/rev)		Semi-standard (pulses/rev)
M Series	2	8192	3	2048
F Series	2	8192	3	2048
G Series	2	8192	3	2048
S Series	4	2048	4	2500
D Series	3	2048	2	8192

•

3. LIST OF STANDARD COMBINATION

SR 15 BE 12 M

SR 20 BE 12 M

SR 30 BE 12 M

SR 44 BE 12 M

M SERIES

Table 3.1 Combination of Servopack, AC Servomotors and Associate Units

3.1

4.1

6.0

8.0

Current Capacity per

MCCB or Fuse A

5

8

8

10

12

18

24

Applicable

Noise Filter

Ŧ

Good

X

Poor

IES	Servopack Type CACR-	AC Servomotor Type	Power Capacity ^{*1} per Servopack kVA
	SR 03 BE 12 M	USAMED-03 B 21	0.65
	SR 07 BE 12 M	USAMED-06 B 21	1.5
	SR 10 BE 12 M	USAMED-09 B 22	2.1

	*1: Values	at rated load.	*2: Made	by Tokin Corp.
--	------------	----------------	----------	----------------

USAMED-12 B 22

USAMED-20 B 22

USAMED-30 B 22

USAMED-44 B 22

• F SERIES

Servopack Type CACR-	AC Servomotor Type	Power Capacity per Servopack kVA	Current Capacity per MCCB or Fuse A	Applicable Noise Filter
SR 02 BE 12 F	USAFED-02 C 21	0.65	E	
SR 03 BE 12 F	USAFED-03 C 21	0.05	5	مسمحهم
SR 05 BE 12 F	USAFED-05 C 21	1.1	5	ţ
SR 10 BE 12 F	USAFED-09 C 21	2.1	8	Good
SR 15 BE 12 F	USAFED-13 C 22	3.1	10	
SR 20 BE 12 F	USAFED-20 C 22	4.1	12	
SR 30 BE 12 F	USAFED-30 C 22	6.0	18	Poor
SR 44 BE 12 F	USAFED-44 C 22	8.0	24	FOOT

G SERIES

390

Servopack Type CACR-	AC Servomotor Type	Power Capacity per Servopack kVA	Current Capacity per MCCB or Fuse A	Applicable Noise Filter
SR 02 BE 12 G	USAGED-02 A 21	0.65	5	
SR 03 BE 12 G	USAGED-03 A 21	0.05	5	amemo
SR 05 BE 12 G	USAGED-05 A 21	1.1	5	ŧ
SR 10 BE 12 G	USAGED-09 A 21	2.1	8	Good
SR 15 BE 12 G	USAGED-13 A 22	3.1	10	
SR 20 BE 12 G	USAGED-20 A 22	4.1	12	° XT°
SR 30 BE 12 G	USAGED-30 A 22	6.0	18	Poor
SR 44 BE 12 G	USAGED-44 A 22	8.0	24	FUU

S SERIES

Servopack Type CACR-	AC Servomotor Type	Power Capacity per Servopack kVA	Current Capacity per MCCB or Fuse A	Applicable Noise Filter
SR 02 BE 13 S	USASEM-02 A 32	0.65	E	
SR 03 BE 13 S	USASEM-03 A 32	0.65	5	e de la composition de la comp
SR 05 BE 13 S	USASEM-05 A 32	1.1	5	Cood
SR 10 BE 13 S	USASEM-08 A 31	2.1	8	Good ⊶rेर्∞∕+ •
SR 15 BE 13 S	USASEM-15 A 31	3.1	10	₩.
SR 30 BE 13 S	USASEM-30 A 31	6.0	18	Poor

• D SERIES

Servopack Type CACR-	AC Servomotor Type	Power Capacity per Servopack kVA	Current Capacity per MCCB or Fuse A	Applicable Noise Filter
SR 05 BE 13 D	USADED-05 E 32	1.5	8	مسمم
SR 15 BE 13 D	USADED-10 E 32	3.1	10	Ţ
SR 20 BE 13 D	USADED-15 E 32	4.1	12	Good
SR 30 BE 13 D	USADED-22 E 32	6.0	18	T <u>A</u>
SR 44 BE 13 D	USADED-37 E 32	8.0	24	Poor

	R	ecommended Noise Filter*2		
Type Specifications		Power ON/OFF Switch		
	LF-305	3-phase 200 VAC class, 5 A		
	LF-310	3-phase 200 VAC class, 10 A	Yaskawa type HI-15E ₂ rated 30 A or equivalent	
	LF-315	3-phase 200 VAC class, 15 A		
	LF-315	3-phase 200 VAC class, 15 A		
	LF-320	3-phase 200 VAC class, 20 A	Yaskawa type HI-18E rated	
	LF-330	3-phase 200 VAC class, 30 A		
	LF-340	3-phase 200 VAC class, 40 A	- 35 A or equivalent	

F	Recommended Noise Filter	Dewer ON/OFF Switch	
Туре	Specifications	Power ON/OFF Switch	
LF-305	3-phase 200 VAC class, 5 A		
LF-305	3-phase 200 VAC class, 5 A		
LF-305	3-phase 200 VAC class, 5 A	- Yaskawa type HI-I5E2 rated - 30 A or equivalent	
LF-315	3-phase 200 VAC class, 15 A		
LF-315	3-phase 200 VAC class, 15 A		
LF-320	3-phase 200 VAC class, 20 A	Vasland tree LIL 195 reted	
LF-330	3-phase 200 VAC class, 30 A	Yaskawa type HI-18E rated	
LF-340	3-phase 200 VAC class, 40 A		

	F	Recommended Noise Filter	Power ON/OFF Switch
	Туре	Specifications	Power ON/OFF Switch
	LF-305	3-phase 200 VAC class, 5 A	
	LF-305	3-phase 200 VAC class, 5 A	Verlage turne LIL 155 reted
	LF-305	3-phase 200 VAC class, 5 A	Yaskawa type HI-15E ₂ rated
	LF-315	3-phase 200 VAC class, 15 A	- 30 A or equivalent
	LF-315	3-phase 200 VAC class, 15 A	
	LF-320	3-phase 200 VAC class, 20 A	Veckeye ture UI 195 reted
5. 17. 1	LF-330	3-phase 200 VAC class, 30 A	Yaskawa type HI-18E rated
	LF-340	3-phase 200 VAC class, 40 A	- 35 A or equivalent

	Recommended Noise Filter	Bower ON/OFF Switch		
Туре	Specifications	Power ON/OFF Switch		
LF-305	3-phase 200 VAC class, 5 A			
LF-305	3-phase 200 VAC class, 5 A	Yaskawa type HI-15E₂ rated 30 A or equivalent		
LF-305	3-phase 200 VAC class, 5 A			
LF-315	3-phase 200 VAC class, 15 A	SOA OF equivalent		
LF-315	3-phase 200 VAC class, 15 A			
LF-330	3-phase 200 VAC class, 30 A	Yaskawa type HI-18E rated 35 A or equivalent		

	F	Recommended Noise Filter	Device ON/OFF Switch		
	Туре	Specifications	Power ON/OFF Switch		
	LF-310	3-phase 200 VAC class, 10 A	Yaskawa type HI-15E ₂ rated		
LF-315	3-phase 200 VAC class, 15 A	30 A or equivalent			
1. J.	LF-320	3-phase 200 VAC class, 20 A			
	LF-330	3-phase 200 VAC class, 30 A	Yaskawa type HI-18E rated		
LF-340	LF-340	3-phase 200 VAC class, 40 A	- 35 A or equivalent		

- 16 -

.

• M SERIES

Table 3.2 Specifications of AC Servomotors, Detector

Servopack	AC Servomotor					
Type CACR-	Туре	Receptacle Type	L-type Plug	Straight Plug	Cable Clamp	
SR 03 BE 12 M	USAMED-03 B 2	MC 2102 A	MC 0100 D	MC 0100 D	140.0057	
SR 07 BE 12 M	USAMED-06 B 2	MS 3102 A	MS 3108 B	MS 3106 B	MS 3057	
SR 10 BE 12 M	USAMED-09 B 2	18 - 10 P	18 - 10 _. S	18 - 10 S	- 10 A	
SR 15 BE 12 M	USAMED-12 B 2	NC 0100 A	MC 0100 D	M0.0100.D	10 0057	
SR 20 BE 12 M	USAMED-20 B 2	MS 3102 A	MS 3108 B	MS 3106 B	MS 3057	
SR 30 BE 12 M	USAMED-30 B 2	22 - 22 P	22 - 22 S	22 - 22 S	- 12 A	
SR 44 BE 12 M	USAMED-44 B 2	MS 3102 A 32 - 17 P	MS 3108 B 32 - 17 S	MS 3106 B 32 - 17 S	MS 3057 - 20 A	

• F SERIES

Servopack		AC Servomotor						
Type CACR-	Туре	Receptacle Type	L-type Plug	Straight Plug	Cable Clamp			
SR 02 BE 12 F	USAFED-02 C 2	MS 3102 A	MS 3108 B	MS 3106 B	MS 3057			
SR 03 BE 12 F	USAFED-03 C 2	14 S - 2 P	14 S - 2 S	14 S - 2 S	- 6 A			
SR 05 BE 12 F	USAFED-05 C 2	MC 2102 A		MO 0100 D	10 0057	1		
SR 10 BE 12 F	USAFED-09 C 2	MS 3102 A	MS 3108 B	MS 3106 B	MS 3057			
SR 15 BE 12 F	USAFED-13 C 2	18 - 10 P	18 - 10 S	18 - 10 S	- 10 A			
SR 20 BE 12 F	USAFED-20 C 2	MC 0100 A	MC 0100 D	M0.0100.D	10 0057	1		
SR 30 BE 12 F	USAFED-30 C 2	MS 3102 A	MS 3108 B	MS 3106 B	MS 3057			
SR 44 BE 12 F	USAFED-44 C 2	22 - 22 P	22 - 22 S	22 - 22 S	- 12 A			

• G SERIES

St

Servopack	AC Servomotor						
Type CACR-	Туре	Receptacle Type	L-type Plug	Straight Plug	Cable Clamp		
SR 02 BE 12 G	USAGED-02 A 2	MS 3102 A	MS 3108 B	MS 3106 B	MS 3057		
SR 03 BE 12 G	USAGED-03 A 2	14 S - 2 P	14 S - 2 S	14 S - 2 S	- 6 A		
SR 05 BE 12 G	USAGED-05 A 2	MC 2100 A		MC 0100 D	NO 0057		
SR 10 BE 12 G	USAGED-09 A 2	MS 3102 A	MS 3108 B	MS 3106 B	MS 3057		
SR 15 BE 12 G	USAGED-13 A 2	18 - 10 P	18 - 10 S	18 - 10 S	- 10 A		
SR 20 BE 12 G	USAGED-20 A 2	MC 2102 A	MC 0100 D		NO 0057		
SR 30 BE 12 G	USAGED-30 A 2	MS 3102 A	MS 3108 B	MS 3106 B	MS 3057		
SR 44 BE 12 G	USAGED-44 A 2	22 - 22 P	22 - 22 S	22 - 22 S	- 12 A		

• S SERIES

Servopack		AC Servo	motor		
Type CACR-	Туре	Receptacle Type	L-type Plug	Cable Clamp	
SR 02 BE 13 S	USASEM-02 A 3		data d	·	
SR 03 BE 13 S	USASEM-03 A 3	MS 3102 A	MS 3108 B	MS 3057	
SR 05 BE 13 S	USASEM-05 A 3	18 - 10 P	18 - 10 S	- 10 A	
SR 10 BE 13 S	USASEM-08 A 3	MS 3102 A	MC 2109 D	MC 2057	
SR 15 BE 13 S	USASEM-15 A 3	20 - 4 P	MS 3108 B	MS 3057	
SR 30 BE 13 S	USASEM-30 A 3	20-4P	20 - 4 S	- 12 A	

• D SERIES

SH SU DE IS S	USASEIM-30 A 3				
Servopack	1	AC S	ervomotor		
Type CACR-	Туре	Receptacle Type	L-type Plug	Straight Plug	Cable Clamp
SR 05 BE 13 D	USADED-05 E 3	MS 3102 A	MS 3108 B	MS 3106 B	MS 3057
SR 15 BE 13 D	USADED-10 E 3	20 - 15 P	20 - 15 S	20 - 15 S	- 12 A
SR 20 BE 13 D	USADED-15 E 3	NO 0100 A	N/0 0100 D	140 0100 D	10 0057
SR 30 BE 13 D	USADED-22 E 3	- MS 3102 A	MS 3108 B	MS 3106 B	MS 3057
SR 44 BE 13 D	USADED-37 E 3	24 - 10 P	24 - 10 S	24 - 10 S	- 16 A

Holding Brakes for Connection

Detector					Holding Brake			
Receptacle Type	L-type Plug	Straight Plug	Cable Clamp	Receptacle Type	L-type Plug	Straight Plug	Cable Clamp	
				MS 3102 A 20 - 15 P	MS 3108 B 20 - 15 S	MS 3106 B 20 - 15 S	MS 3057 - 12 A	
MS 3102 A 20 - 29 P	MS 3108 B 20 - 29 S	MS 3106 B 20 - 29 S	MS 3057 - 12 A	MS 3102 A 24 - 10 P	MS 3108 B 24 - 10 S	MS 3106 B 24 - 10 S	MS 3057 - 16 A	
							10.000	

Detector					Holding Brake			
 Receptacle Type	L-type Plug	Straight Plug	Cable Clamp	Receptacle Type	L-type Plug	Straight Plug	Cable Clamp	
				MS 3102 A 14 S - 6 P	MS 3108 B 14 S - 6 S	MS 3106 B 14 S - 6 S	MS 3057 - 6 A	
MS 3102 A 20 - 29 P	MS 3108 B 20 - 29 S	MS 3106 B 20 - 29 S	MS 3057 - 12 A	MS 3102 A 20 - 15 P	MS 3108 B 20 - 15 S	MS 3106 B 20 - 15 S	MS 3057 - 12 A	
				MS 3102 A 24 - 10 P	MS 3108 B 24 - 10 S	MS 3106 B 24 - 10 S	MS 3057 - 16 A	

	Detector				Holding Brake			
ł	Receptacle Type	L-type Plug	Straight Plug	Cable Clamp	Receptacle Type	L-type Plug	Straight Plug	Cable Clamp
					MS 3102 A	MS 3108 B	MS 3106 B	MS 3057
			1		14 S - 6 P	14 S - 6 S	14 S - 6 S	- 6 A
	MS 3102 A 20 - 29 P	MS 3108 B 20 - 29 S	MS 3106 B 20 - 29 S	MS 3057 - 12 A	MS 3102 A 20 - 15 P	MS 3108 B 20 - 15 S	MS 3106 B 20 - 15 S	MS 3057 - 12 A
ŧ.					MS 3102 A 24 - 10 P	MS 3108 B 24 - 10 S	MS 3106 B 24 - 10 S	MS 3057 - 16 A

	Detector			Holding Brake			
Receptacle Type	L-type Plug	Cable Clamp	Receptacle Type	L-type Plug	Cable Clamp		
	—						
			MS 3102 A	MS 3108 B	MS 3057		
MS 3102 A	MS 3108 B	MS 3057	18 - 12 P	18 - 12 S	- 10 A		
20 - 29 P	20 - 29 S	- 12 A	MS 3102 A 20 - 17 P	MS 3108 B 20 - 17 S	MS 3057 - 12 A		

2 2	Detector			
Receptacle Type	L-type Plug	Straight Plug	Cable Clamp	
MS 3102 A 20 - 29 P	MS 3108 B	MS 3106 B	MS 3057	
20 - 29 P	20 - 29 S	20 - 29 S	- 12 A	

Note: When plugs or clamps are required, contact Yaskawa representative. The following connections are provided: soldered type (type MS) and solderless type (type JA).

4. CHARACTERISTICS

33

4.1 OVERLOAD CHARACTERISTICS

The overload protective circuit built in Servopack prevents the motor and Servopack from overload and restricts the allowable conduction time of Servopack. (See Fig. 4.1.)

The overload detection level is set precisely by the hot start conditions at an ambient temperature of 55°C and cannot be changed.

NOTE

Hot start is the overload characterisitcs when the Servopack is running at the rated load and thermally saturated.

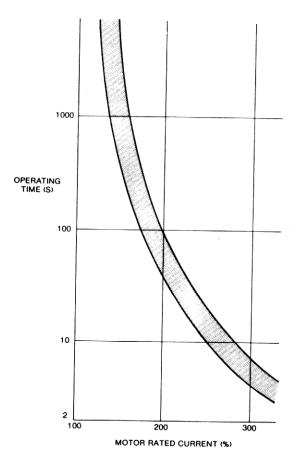


Fig. 4.1 Allowable Conduction Current of Servopack.

4.2 STARTING AND STOPPING TIME

The starting time and stopping time of servomotor under a constant load is shown by the formula below. Viscous or friction torque of the motor is neglected.

Starting Time:

$$tr = 104.7 \times \frac{N_R (J_M + J_L)}{Kt \cdot I_R (\alpha \cdot \beta)} \quad (ms)$$

Stopping Time:

$$tf = 104.7 \times \frac{N_R (J_M + J_L)}{Kt \cdot I_R (\alpha + \beta)} \quad (ms)$$

Where,

Nr: Rated motor speed (r/min)

 $J_M (= GD_M^2/4)$: Moment of rotor inertia (kg•m²)

 $J_L (= GD_L^2/4)$: Moment of load inertia (kg•m²)

- *K*_{*t*}: Torque constant of motor (N•m/A)
- *IR*: Motor rated current (A)

 $= I_p/I_R$: Acceleration/deceleration current constant

IP: Acceleration/deceleration current (Acceleration/deceleration current α times the motor rated current) (A)

 $= I_L/I_R$: Load current constant

L: Current equivalent to load torque (Load current β times the motor rated current) (A)

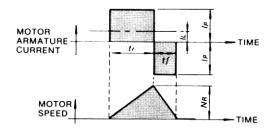


Fig. 4.2 Timing Chart of Motor Armature Current and Speed

4.3 ALLOWABLE FREQUENCY OF OPERATION

The allowable frequency of operation is restricted by the servomotor and Servopack, and both the conditions must be considered for satisfactory operation.

Allowable frequency of operation restricted by the Servopack

The allowable frequency of operation is restricted by the heat generated in the regenerative resistor in the Servopack, and varies depending on the motor types, capacity, load J (JL), acceleration/deceleration current values, and motor speed. If the frequency of operation exceeds 60 times/min when load J = 0 before the rated speed is reached, or if it

exceeds $\frac{00}{m+1}$ cycles/min when $J_L = J_M \times m$, contact Yaskawa representative.

• Allowable frequency of operation restricted by the Servomotor

The allowable frequency of operation varies depending on the load conditions, motor running time and the operating conditions. Typical examples are shown below.

See Par.4.2 Starting and Stopping Time for symbols.

• When the motor repeats rated-speed operation and being at standstill (Fig.4.3).

Cycle time (T) should be determined so that RMS value of motor armature current is lower than the motor rated current:

$$T \ge \frac{Ip^2 (tr + tf) + I_L^2 ts}{IR^2} \quad (s)$$

38

Where cycle time (T) is determined, values Ip, tr, tf satisfying the formula above, should be specified.

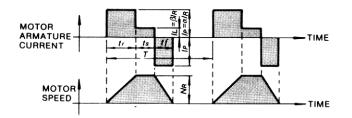


Fig. 4.3 Timing Chart of Motor Armature Current and Speed • When the motor remains at standstill between cycles of acceleration and deceleration without continuous rated speed running (Fig. 4.4).

The timing chart of the motor armature current and speed is as shown in **Fig. 4.4**. The allowable frequency of operation "n" can be calculated as follows:

$$n = 286.5 \times \frac{K_t \cdot I_R}{N_R (J_M + J_L)} \times \frac{1}{\alpha} - \frac{\beta^2}{\alpha^3} \qquad \text{(times/min)}$$

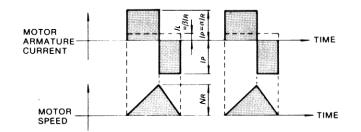


Fig. 4.4 Timing Chart of Motor Armature Current and Speed

• When the motor accelerates, runs at constant speed, and decelerates in a continuing cycle without being at standstill (Fig. 4.5).

The timing chart of the motor armature current and speed is as shown in **Fig. 4.5**. The allowable frequency of operation "n" can be calculated as follows.

$$n = 286.5 \times \frac{K_{l} \cdot I_{R}}{(J_{M} + J_{L})} \times \frac{1}{\alpha} - \frac{\beta^{2}}{\alpha} \qquad (\text{times/min})$$

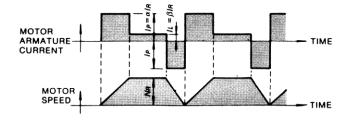


Fig. 4.5 Timing Chart of Motor Armature Current and Speed

4.4 SERVOMOTOR FREQUENCY

In the servo drive consisting of Servopack and servomotor, motor speed amplitude is restricted by the maximum armature current controlled by Servopack.

The relation between motor speed amplitude (N) and frequency (f) is shown by the formula below:

$$N = 1.52 \times \frac{\alpha \cdot K_t \cdot I_R}{(J_M + J_L) f} \quad (r/min)$$

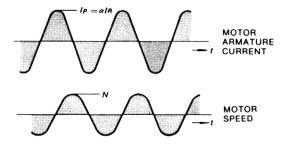
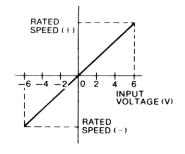



Fig. 4.6 Timing Chart of Motor Armature Current and Speed

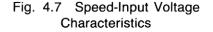

4.5 MOTOR SPEED-REFERENCE INPUT CHARACTERISTICS

Fig. 4.7 shows motor speed and input voltage curve when speed reference input terminals 1CN-12 and (3) are used. With auxiliary input terminals, 1CN-14 and (5), motor speed can be set to the rating by adjusting [IN-B] potentiometer as long as input voltage is within $\pm 2\text{V}$ to $\pm 10\text{V}$. See Fig. 4.8.

The forward motor rotation (+) means counterclockwise rotation when viewed from the drive end.

33

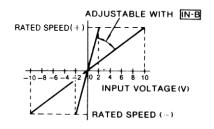


Fig. 4.8 Speed-Input Voltage Characteristics when Auxiliary Input Terminals 1CN- ⁽¹⁾ and ⁽¹⁾ are used.

4.6 MOTOR MECHANICAL CHARACTERISTICS

4.6.1 Mechanical Strength

AC servomotors can carry up to 300% of the rated momentary maximum torque at output shaft. (D series up to 350%)

4.6.2 Allowable Radial Load and Thrust Load

 Table 4.1 shows allowable loads according to AC servomotor types.

Table 4.1	M Series Allowable Radial Load
	and Thrust Load

Motor Type USAMED-	Allowable Radial Load* N (lb)	Allowable Thrust Load N (lb)
03 B 21	490 (110)	98 (22) [†]
06 B 21	490 (110)	98 (22) [†]
09 B 22	686 (154)	343 (77)
12 B 22	1470 (330)	490 (110)
20 B 22	1470 (330)	490 (110)
30 B 22	1470 (330)	490 (110)
44 B 22	1764 (397)	588 (132)

Table 4.4 S Series Allowable Radial Load and Thrust Load

Motor Type USASEM-	Allowable Radial Load* N (lb)	Allowable Thrust Load N (lb)
02 A 32	78.4 (18)	39.2 (9)
03 A 32	245 (55)	98 (22)
05 A 32	245 (55)	98 (22)
08 A 31	392 (88)	147 (33)
15 A 31	490 (110)	147 (33)
30 A 31	686 (154)	196 (44)

Table 4.2 F Series Allowable Radial Load and Thrust Load

Motor Type USAFED-	Allowable Radial Load* N (lb)	Allowable Thrust Load N (lb)
02 C 21	147 (33)	49 (11) [†]
03 C 21	147 (33)	49 (11) [†]
05 C 21	490 (110)	98 (22) [†]
09 C 21	490 (110)	98 (22) [†]
13 C 22	686 (154)	343 (77)
20 C 22	1470 (331)	490 (110)
30 C 22	1470 (331)	490 (110)
44 C 22	1470 (331)	490 (110)

Table 4.3 G Series Allowable Radial Load and Thrust Load

Motor Type USAGED	Allowable Radial Load* N (lb)	Allowable Thrust Load N (Ib)
02 A 21	147 (33)	49 (11)
03 A 21	147 (33)	49 (11)
05 A 21	490 (110)	98 (22)
09 A 21	490 (110)	98 (22)
13 A 22	686 (154)	343 (77)
20 A 22	1470 (331)	490 (110)
30 A 22	1470 (331)	490 (110)
44 A 22	1470 (331)	490 (110)

Table 4.5 D Series Allowable Radial Load and Thrust Load

Motor Type USADED-	Allowable Radial Load N (lb)	Allowable Thrust Load N (lb)
05 E 32	686 (154)	343 (77)
10 E 32	686 (154)	343 (77)
15 E 32	1176 (265)	490 (110)
22 E 32	1176 (265)	490 (110)
37 E 32	1176 (265)	490 (110)

* Maximum values of the load applying to the shaft extension.

† Do not apply the exceeding load because motor cannot be rotated.

4.6.3 Mechanical Specifications

Accuracy (T.I.R.) [†]		Reference Diagram
Flange surface perpendicular to shaft (A)	0.04 (0.06) [‡]	
Flange diameter concentric to shaft ®	0.04	
Shaft run out ©	0.02 (0.04)*	ᡪ᠆᠆ᠿ _ᢆ

Table 4.6	Mechanical	Specifications	in	mm	
-----------	------------	----------------	----	----	--

T.I.R. (Total Indicator Reading)
Accuracy for motor types USADED-15E3, -22E3, and -37E3.
Accuracy for motor type USAMED-44B22.

4.6.4 Direction of Rotation

AC servomotors rotate counterclockwise viewed from drive end when motor and detector leads are connected as shown below.

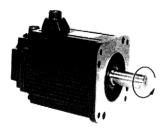
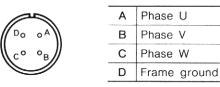


Fig. 4.9 AC Servomotor

- (1) Connector Specifications for Standard Servomotors
- (a) Motor receptacle
- M,F,G Series

38


А	Phase U
В	Phase V
С	Phase W
D	Frame ground

• S Series

(Type USASEM-02A)

Color of Lead	Applicable
Red	Phase U
White	Phase V
Blue	Phase W
Green	Frame ground

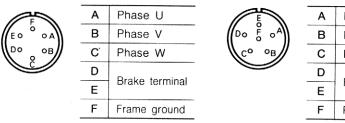
(Types USASEM-03A to 30A)

(b) Detector receptacle

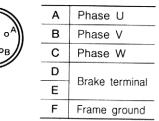
M OA OB	Α	Channel A output	к	
	в	Channel A output	L	
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	С	Channel B output	М	
	D	Channel B output	N	
	Е	Channel C output	Р	
	F	Channel C output	R	
	G	0 V	S	
	н	+ 5 VDC	т	
	J	Frame ground		

- (2) Connector Specifications for Servomotor with Brake
- M, F, G, D Series (Brake is provided to all types of D series as standard.)

Α	Phase U	E	Dreke to size i
В	Phase V	F	Brake terminal
С	Phase W	G	
D	Frame ground		


Types without brake of D series do not use E and F.

• S Series


(Type USASEM-02A)

Color of Lead	Applicable				
Red	Phase U				
White	Phase V				
Blue	Phase W				
Black	Droke				
Black	Brake				
Green	Frame Ground				

(Types USASEM-03A, -05A)

(Types USASEM-08A to 30A)

4.6.5 Impact Resistance

When mounted horizontally and exposed to vertical shock impulses, the motor can withstand up to two impacts with impact acceleration of 50G (Fig.4.10).

NOTE

A precision detector is mounted on the opposite-drive end of AC servomotor. Care should be taken to protect the shaft from impacts that could damage the detector.

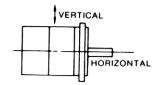


Fig. 4.10 Impact Resistance

4.6.6 Vibration Resistance

When mounted horizontally, the motor can withstand vibration (vertical, lateral, axial) of 2.5 G (Fig.4.11).

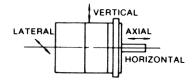


Fig. 4.11 Vibration Resistance

4.6.7 Vibration Class

Vibration of the motor running at rated speed is 15 μ m or below (Fig.4.12).

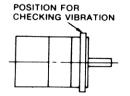
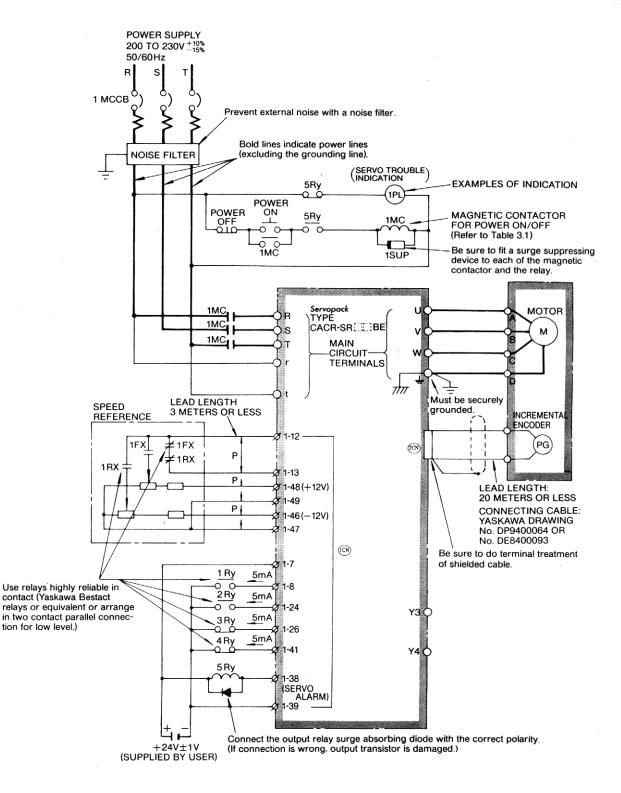



Fig. 4.12 Vibration Checking

5. CONFIGURATION

38

5.1 CONNECTION DIAGRAM

3

Fig. 5.1 Example of Connection Diagram of **Servopack** with a Servomotor and Peripherals

5.2 MAIN CIRCUIT TERMINALS

Table 5.1 shows the specifications of main circuit terminals for Servopack.

		•
Terminal Symbol	Name	Description
® S T	Main-circuit AC input	Three-phase 200 to 230 VAC $^{+10}_{-15}$ %, 50/60 Hz.
W V W	Motor connection	Connects terminal $\textcircled{0}$ to motor terminal A, $\textcircled{0}$ to B and $\textcircled{0}$ to C.
r t	Control power input	Single-phase 200 to 230 VAC $^{+10}_{-15}$ %, 50/60 Hz
	Frame ground	Connects to motor terminal D. Must be securely grounded.
Y3 Y4	Regenerative resistor	External connection not usually required.

Table 5.1 Main Circuit Terminals for Servopack

5.3 APPLICABLE RECEPTACLES

5.3.1 Specifications of Connector Terminal (1CN) for Input/Output Signal

 Table 5.2
 Specifications of Applicable Receptacles for Servopack Input/Output Signal

Connector Type*	Applicable Receptacle Type							
used in Servopack	Manufacturer	Soldered Type	Caulking Type	Case				
MR-50RMA (Right angle 50 P)	Honda Tsushin Co., Ltd.	MR-50F [†]	MRP-50F01	MR-50L [†]				

* The connectors for input/output signals used are type MR-50RMA made by Honda Tsushin Co.

† Attached to Servopack when shipping.

5.3.2 Specifications of Connector Terminal (2CN) for Encoder

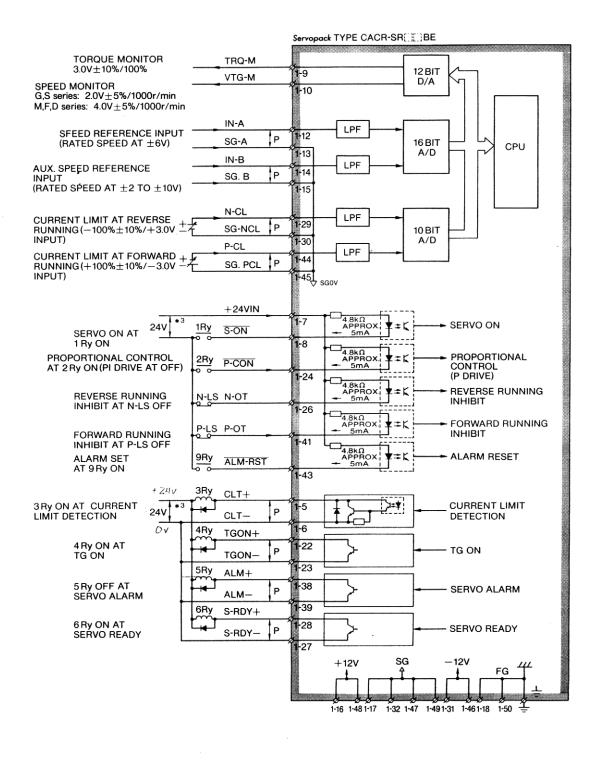
Table 5.3	Specifications of Applicable Receptacles for
	Servopack Encoder

Connector Type*		Specifications of			
used in Servopack	Manufacturer Soldered Type Caulking Type		Case	Connecting Cable	
MR-20RMA (Right angle 20 P)	Honda Tsushin Co., Ltd.	MR-20F [†]	MRP-20F01	MR-20L [†]	Yaskawa Drawing No. DP8409123 or No. DE8400093

* The connectors for encoder used are made by Honda Tsushin Co.

† Attached to Servopack when shipping.

5.4 CONNECTOR TERMINAL (1CN) FOR I/O SIGNAL


5.4.1 Connector 1CN Layout and Connection of Servopack

The terminal layout of the Servopack input/output signal connectors (1CN) is shown in **Table 5.4.** The external connection and external signal processing are shown in **Fig. 5.2** on page 30.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
٥v	٥v	οv	РНА	CLT +	CLT	+24V IN	S-ON	TRQ -M	VTG -M	SG	,IN-A	SG-A	IN-B	SG-B	+12V	SG	FG
1 -	V for I tput Si	-	Open Collector Output Aø	Currer Detectio	it Limit n Output	Ext Power Input	Servo ON Power	Torq	Speed ue mo	Monitor	Speed F Inp	leference out	1	iliary out	+1 Out	2V put	Frame Ground
		19	20	21	22	23	24	25	26	27	28	29	30	31	32		ـــــــــــــــــــــــــــــــــــــ
		РСО	*PCO	РНС	TGON +	TGON	P-CON	ALO1	N-OT	S-RDY	S-RDY +	N-CL	SG- NCL	-12V	SG		
			Driver to ϕ	Open Collector Output C Ø	TG Signal	ON Output	P Drive Input	Open Collector Output	Reverse Inhibit Input		Ready	Reverse Limit	Current Input		2V put		
33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
PAO	*PAO	PBO	*PBO	РНВ	ALM +	ALM _	ALO2	P-OT	ALO3	ALM- RST	P-CL	SG- PCL	-12V	SG	+12V	SG	FG
Out	Driver tput Ø		Driver put ϕ	Open Collector Output B Ø	Servo Out		Open Collector Output	Fwd. Inhb. Input	Open Collector Output	Alarm Reset Input	Fwd. C Limit			2V put	+1 Out		Frame Ground

Table 5.4	Connector 1	1CN Layout	of Servopack
-----------	-------------	------------	--------------

Note: For input signal and method of application, refer to Table 5.5 and 5.6.

p : Twisted cable.

Notes:

1. Each capacity of output circuits is 30VDC, 50mA or less.

2. The user must provide the 24V power supply and battery.

Fig. 5.2 Input/output of Signals and Connector 1CN

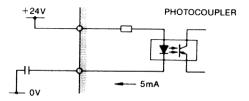
5.4.2 Input Signal and Method of Application

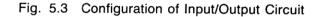
Signal Name	Connector 1CN No.	Function	Description			
S-ON	1CN-8	Servo ON	 Inputting this signal makes the Servopack ready to receive speed reference input (+6 V). Base block and dynamic brake are cleared. 			
	1CN-24	Proportional drive reference	 Proportional control command applies friction torque to the motor to prevent drifting when the motor is left motionless without command input, while the main circuit is kept energized. 			
P-CON	Three functions are selectable with parameter	Zero clamp operation reference	 Inputting this signal makes the motor keep speed zero (stop) state and prevent drifting. 			
	setting.	Changeover command for torque control/ speed control	 In torque control II mode, inputting this signal makes the Servopack change torque control to speed control. 			
N-OT P-OT	1CN-26 1CN-41	Reverse running prohibit Forward running prohibit	 In the case of linear drive, etc., connect limit switch signal according to the run direction. Since it is a bar signal (reverse signal), it is "closed" during normal run. When limit switch is tripped, it becomes "open". Inputting this signal makes the Servopack cancel the functions and become "normally N-OT" or "normally P-OT". 			
+24 VIN	1CN-7	24 V	•External power supply to 1CN-8, 24, 26, 41 and 43 Prepare a 24 VDC (25 mA min.) power supply.			
IN-A	1CN-12 (13)	Speed command input*	At ± 6.0 V, \pm rated speed is obtained.			
	10N 14 (15)	Aux. command input*	At $\pm 2.0V$ to $\pm 10.0V$, \pm rated speed is obtained.			
IN-B 1CN-14 (15)		• When either of IN-A or IN-B is used, be sure to set the unused input "Zero specification".				
N-CL	1CN-29 (30)	Current limit reference at reverse running	+3.0 V ±10%/100% torque +9V max.			
P-CL	1CN-44 (45)	Current limit reference at forward running	$-3.0 \text{ V} \pm 10\%/100\%$ torque -9V max.			
ALM-RST	43	Alarm reset	Resets Servo alarm state.			

Table 5.5 Input Signals of Connector 1CN

* Torque command input: $\pm 3V$ /rated torque.

58


- 31 -


5.4.3 Input Circuit

There are five types of protective functions to prevent continued rotation of the motor in forward and reverse direction: Servo ON inputs, proportional drive circuits, overtravel protection circuits, and alarm reset inputs. Construct the input circuit using 24V power supply (Fig.5.3). Typical circuits are shown in Fig. 5.2.

NOTE

The user must provide the 24V power supply: 24VDC \pm 1V, 25mA or more (approx 5mA/circuit)

(1) P-CON

This input signal is used with three types as follows:

(a) Proportional Drive

If a position loop is not set for positioning, and after completion of positioning, has been left for quite a long time, the positioned point may have moved due to preamplifier drift. To avoid this, switch the speed amplifier from PI drive to P drive after the positioning and the loop gain in the control system drops and the drift decreases. With several percent of friction load, the motor stops completely.

(b) Zero-clamp Operation

It keeps the speed of the motor at zero for a long time in servo lock condition when the motor stops. This operation is efficient for such as vertical loads. Continuous duty torque in servo lock condition must be 70% or below.

(c) Torque/Speed Control Changeover

In torque control mode II, the P-CON signal input determines whether the torque or speed control system takes effect.

(2) Forward and reverse running prohibit [P-OT, N-OT]

These circuits are used to stop the forward running of the motor (counterclockwise when viewed from the drive end of the motor) and reverse running.

When the overtravel prevention circuit is not used, this function can be canceled with connecting. Four operations are selectable with parameter setting when the overtravel prevention circuit is used. 1CN- 26 and 40 to the 0 V terminal of the external 24 V power supply or parameter setting.

(a) Coasting to a stop

In the overtravel state, the motor runs freely.

(b) DB Stop

In the overtravel state, the motor can be stopped by the dynamic brake. A parameter is used to determine whether the stopped motor is to be continuously locked by the dynamic brake or freed.

(c) Stop at Torque Setting Defined by User Constant

In the overtravel state, the internal circuitry forcibly issues a speed reference of 0, without respect to the presence of another speed reference, so as to stop the motor immediately. After the motor is brought to a stop, it becomes free.

(d) Stop at Torque Setting Defined by User Constant, Which Is Followed by a Zero Clamp Opertion

After the motor stops as indicated in paragraph (C) above, it enters the zero clamp mode.

(3) Servo ON [S-ON]

38

This circuit is used to turn on the main-circuit power-drive circuit of the Servopack. When the signal of the circuit is not input (Servo OFF state) the motor cannot be driven. If this signal is applied during motor running, the motor will coast to stop. Servo ON signal can be omit with parameter setting.

NOTE

Before turning power on or off, turn off the "Servo-ON" switch to avoid troubles resulting from spurious current.

(4) Alarm reset (ALM-RST)

This signal is used as a servo alarm external reset signal. Resume operations after eliminating the cause of alarm signal generation. In the interests of safety, set the speed reference to 0 V before activating the reset signal.

5.4.4 Use of Output Signals

Signal Name	Connector 1CN No.	Function	Description
ALM	38 (39)	Servo alarm	 Turns OFF when fault is detected. For details, refer to Table 6.1 Fault Detection Function.
TGON	Rotation detection		Turns ON when motor speed exceeds speed set with parameter.
	Brake interlock output		• Outputs timing signal of external brake signal.
CLT	5 (6)	Current limit detection	 N-CL or P-CL used: Turns ON when output torque reaches the lower level set by N-CL, P-CL or TLMTF TLMTR. N-CL or P-CL not used: Turns ON when output torque reaches the level set by TLMTF TLMTR.
S-RDY	28 (27)	Servo ready	 Turns ON when main power supply ON and servo alarm OFF.
+ 12 V 0V - 12 V	16, 48 17, 32, 47, 49 31, 46	± 12 V Output Power supply	 ±12V ±5% max output current: 30 mA Used with speed command or current input.
TRQ-M	9	Torque monitor	- (Rated torque at ± 3.0 V) $\pm 10\%$, $\pm 9V$ max, load 1 mA max
VTG-M	10	Speed monitor	 ±2.0V/1000r/min ±5% (G, S series) ±4.0V/1000r/min ±5% (M, F, D series) Load: 1 mA max
PAO *PAO PBO *PBO PCO *PCO	33 34 35 36 19 20	PG Signal Output-1 Phase A PG Signal Output-1 Phase A PG Signal Output-1 Phase B PG Signal Output-1 Phase B PG Signal Output-1 Phase C PG Signal Output-1 Phase C	 Pulse after frequency division is output line driver (MC 3487*). To be received by line receiver (MC 3486*).
PHA PHB PHC	4 (1) 37 (2) 21 (3)	PG Signal Output-2 Phase A PG Signal Output-2 Phase B PG Signal Output-2 Phase C	 Open collector output Pulse after frequency division Max operating voltage : 30 VDC Max output current : 20 mA DC
ALO1 ALO2 ALO3	25 (1) 40 (2) 42 (3)	Alarm Output Code (BCD code)	 Open collector output Max Operating voltage : 30V DC Max output current : 20 mA DC

Table 5.6 Output Signa

* Made by Texas Instrument Inc.

.

5.4.5 Output Circuit

There are four non-contact output signals, employing transistors: Current limit detection, TG ON, Servo alarm, Servo ready, and three alarm codes with open collector output.

Voltage and current specifications are:

Applied Voltage (V max) $\leq 30V$ Conduction Current (Ip) ≤ 100 mA

NOTE

The output circuit requires a separate power supply of 20mA or below for open collector output. It is recommended to use the same 24V power suppy used for the input circuit (**Fig. 5.4**).

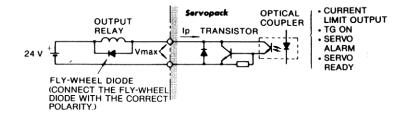


Fig. 5.4 Output Circuit

(1) Optical encoder (PG) output circuit [PAO, *PAO, PBO, *PBO, PCO, *PCO]

Phases A, B, and C (original point) signals for the optical encoder, PG are output.

Use these signals as positioning signals. The output signal specifications are as follows:

(a) Signal form

188

- Two-phase pulse with 90° pulse difference (phases A and B)
- Original point pulse (phase C)
- (b) Output circuit and receiver circuit

Two types of output circuits are provided: line driver output and open collector output. Fig. 5.5 shows an example of line driver output.

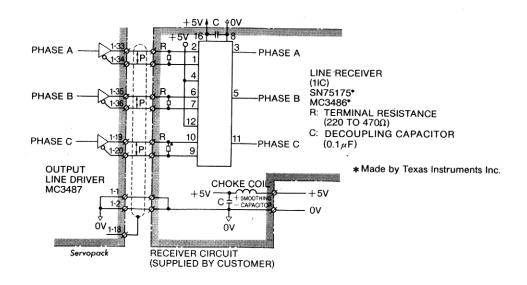
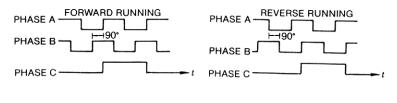
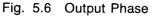
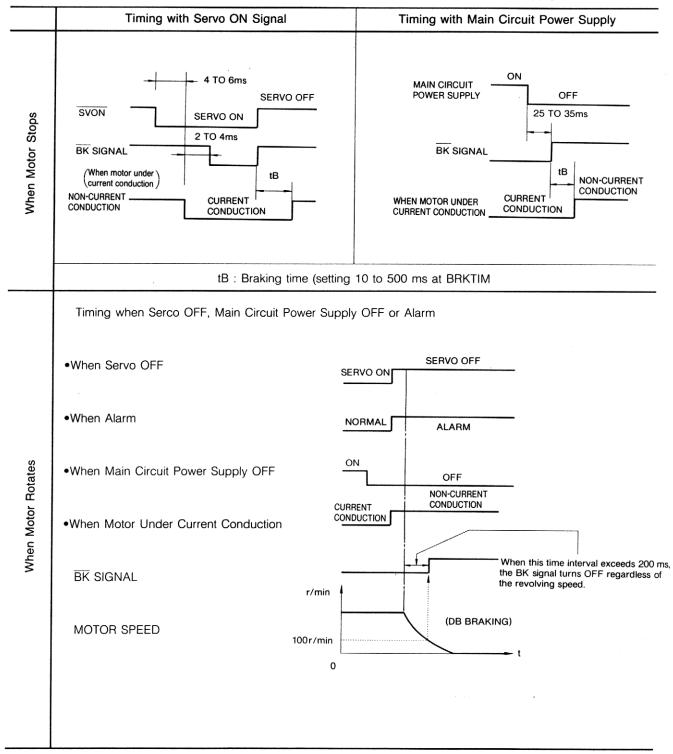




Fig. 5.5 Output Circuit and Receiver Circuit

(c) Output phase (frequency dividing ratio: 1/1)


For details of frequency division, refer to sect. 7, "USER CONSTANT" (8).

(2) Holding Brake Interlock Signal

The brake signal output, which is dependent on the motor circuit conduction state and motor revolving speed, can be generated.

<Setup Procedure>

When the user constant (memory switch) is set to provide the braking function, the brake signal output is generated from the CN23 (TG ON). The time interval tB [\times 10 ms] between braking and motor conduction termination is determined by the BRKTIM. user constant.

82

Table 5.7 Timing with Servo ON signal and Main Circuit Power Supply

5.5 CONNECTOR TERMINAL (2CN) FOR OPTICAL ENCODER CONNECTION

5.5.1 Connector Layout

ab		5.0	0		COIC	<i>,</i> , , , , , , , , , , , , , , , , , ,		Lay	Jour		0ei	vop	acr
]	L	2	2	:	3		4		5		6		7
0	۶P	0	۶P	0	₅P	+	5 P	+	5 P	+	5 P	D	IR
	8	3	ç	9	1	0	1	1	1	2	1	3	
1	4	1	5	1	6	1	7	1	8,	1	9	2	0
P	с	*]	PC	P	A	*]	PA	Р	В	*]	PB	F	G

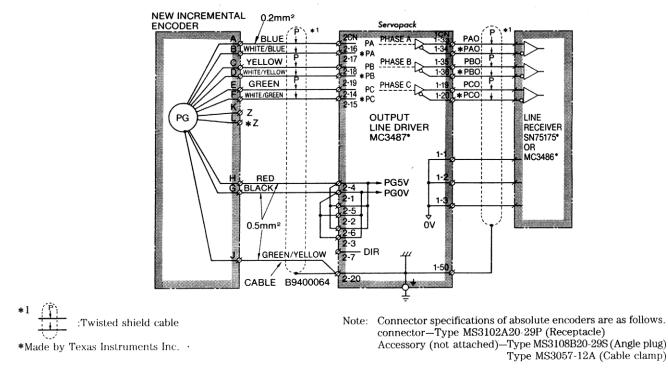
Table 5.8 Connector 2CN Layout of Servopack

5.5.2 Applicable Cables

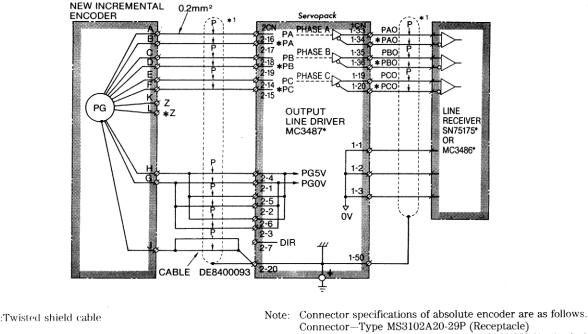
The cables listed in Table 5.9 are available on request. If required, purchase in units of standard length as shown in Table 5.7.

Connection	Soldered Type	Caulking Type		
Yaskawa Drawing No.	B9400064	DE 8400093		
Manufacturer	Fujikura	Cable Co.		
General Specifications	Double, KQVV-SW AWG 22 × 3 C AWG 26 × 6 P	KQVV-SB AWG 26 × 10 P		
Finishing Dimensions	ø7.5mm	∮ 10.0 mm		
(Recommended Receptacle Type)	For Soldered Type	For Caulking Type		
Internal Composition and Lead Color	A1 Red A2 Black A3 Green yellow F1 Blue- While/blue F2 Vhile/blue F3 Light green- While/ight green- mange-	1 Blue- White- 2 Yellow- White 3 Green- White 4 Red- White 5 Purple- White 6 Blue- Brown 7 Yellow-		
(Sandard Application: B9400064	F 4 White/orange	7 Brown 8 Green- Brown 9 Red- Brown 10 Purple- Brown		
Yaskawa Standard Specifications	Standard length: 5m, Terminal ends are not connectors).	0m, 20m provided (with		

Table 5.9 Details of Specifications of Applicable Cables

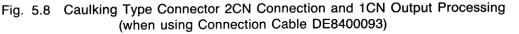

NOTE

- 1. When applicable cables listed in Table 5.9 are used, allowable wiring distance between Servopack and motor is a maximum of 20 meters.
- 2. The cable applied for 50 m wiring distance is available on order (Yaskawa drawing No. DP8409179). If wiring distance is 20m or more, contact your Yaskawa representative.


5.5.3 Method of Connection

-32

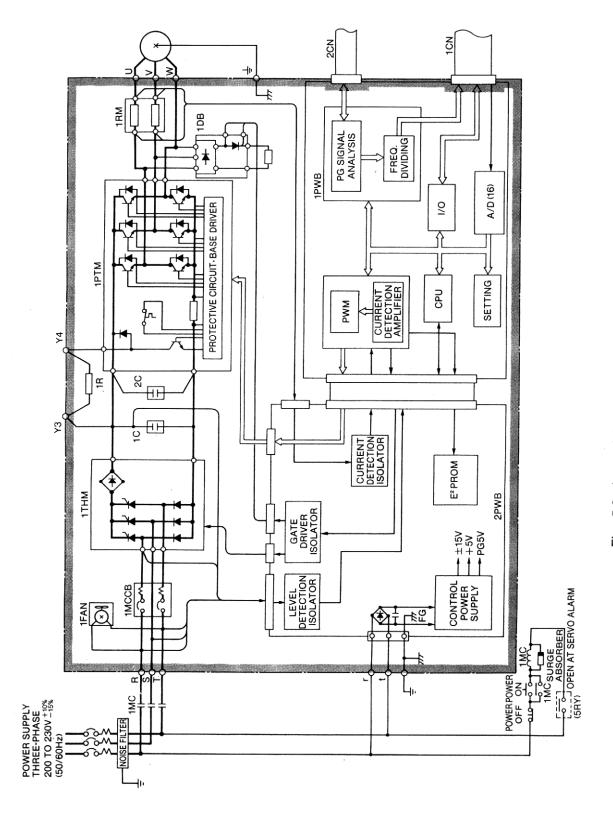
351

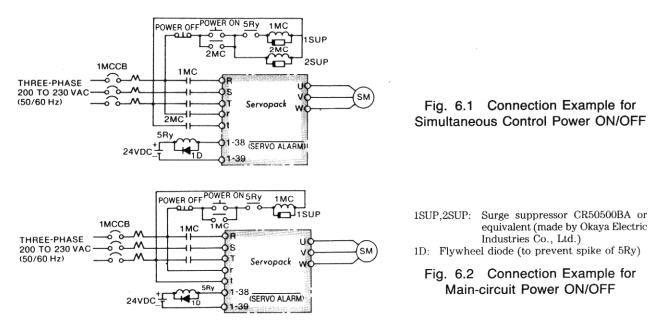


*Made by Texas Instruments Inc.

Connector – Type MS3102A20-29P (Receptacle) Accessory (not attached)–Type MS3108B20-29S (Angle plug) Type MS3057-12A (Cable clamp)

()




Fig. 5.9 Internal Block Diagram of Servopack

6. OPERATION

12

6.1 POWER ON AND OFF

Arrange the sequence so that the power is simultaneously supplied to the main circuit (R, S, T) and the control circuit (r, t), or supplied to the control circuit first, then to the main circuit (Figs. 6.1 and 6.2).

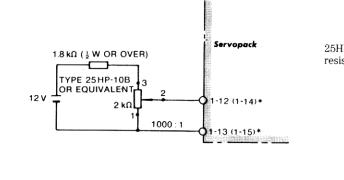
Arrange the sequence so that the power is simultaneouly cut (including momentary power failure) (Fig. 6.1), or the power to the main circuit is cut first, then the control circuit (Fig. 6.2). The order is the reverse of the power ON sequence.

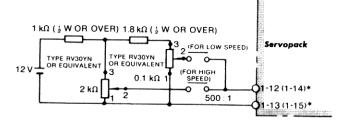
Precautions for Connections in Figs. 6.1 and 6.2

- Make sequence to assure that the main circuit power will be cut off by a servo alarm signal. (The alarm information is written on E² PROM, so when the power is simultaneously cut, the alarm subject can be checked with the power resupplied.)
 - F the control circuit is turned off, the LED indicating the kind of servo alarm also goes out.
- When power is supplied to the power ON/OFF sequence shown in Fig.6.1, the normal signal is set (5Ry is turned on) in the control circuit after a maximum delay of 1 second.
 - Note: When the power is turned on, a servo alarm signal continues for approximately 1 second (normally 200 to 300 ms) to initialize the Servopack.
- Since Servopack is of a capacitor input type, large recharging current flows when the main-circuit power is turned on (recharging time: 0.5s to 1s). If the power is turned on and off frequently, the recharging-current limit resistor may be degraded and a malfunction may occur.

When the motor starts, turn ON the speed reference and turn it OFF when the motor stops. Do not turn the power ON or OFF.

• Before power on or off, turn off the "Servo ON" switch to avoid transient troubles.


6.2 SPEED REFERENCE


6.2.1 Speed Reference Circuit

From the Servopack built-in control power (1CN- (16), (48): +12V, 1CN- (17), (32), (47), (49): 0V, 1CN-(31), (46): -12V) or the external power, the speed reference voltage is given to 1CN-(12) and (13) or to 1CN- (14) and (15) When the Servopack built-in control power is used, the motor speed fluctuates in the range of ±2% of the speed set value.

The method for giving speed reference voltage is described below.

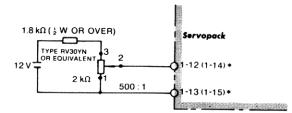
(1) For accurate (inching) speed setting

25HP-10B type: Multiple-rotation type, wire wound variable resistor (with dial MD10-30B4) made by Sakae Tsushin inc.

(a) When Multiple-rotation Type, Wire Wound Variable Resistor is used

RV30YN type: Carbon-film variable resistor made by Tokyo Cosmos Electric.

Low- and high-speed relays: Reed relay (SRF-B, SRG-B) made by Nippon Electric or equivalent, or low-level relay ($G_{z}A$ -432) made by Omron Corporation or equivalent.

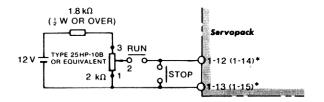

Note: When a carbon resistor is used, a great residual resistance remains, and so the speed control range becomes approximately 500:1.

(b) When Carbon Variable Resistor is used

* Parenthses are for auxiliary input.

Fig. 6.3 Method for Giving Speed Reference Voltage [for Accurate (inching) Speed Setting]

(2) For relatively rough speed setting



* Parentheses are for auxiliary input.

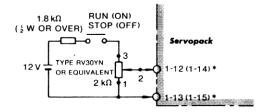

Note: When a carbon rsistor is used, a great residual resistance remains, and so the speed control range becomes about 500:1.

Fig. 6.4 Method for Giving Speed Reference Voltage (for relatively Rough Speed Setting as Compared with Fig. 6.3)

When commanding a stop, do not open the speed reference circuit (1CN- (12) 1CN- (14)), but set to 0V.

(a) When Multiple-rotation Type, Wire Wound Variable Resistor is used

(b) When Carbon Variable Resistor is used

* Parentheses are for auxiliary input.

Fig. 6.5 Method for Giving Stop Reference

6.2.3 Handling of Speed Reference Input Terminal

The unused terminals, out of the speed reference terminals 1CN- (12), (13) and the auxiliary input terminal 1CN- (14), (15) must be short-circuited or select ''Zero-speed Reference'' with parameter setting.

6.2.4 Auxiliary Input Circuit (± 2 to $\pm 10V$)

Auxiliary input circuit is used for application at rated reference voltage other than $\pm 6V$.

• Adjustment procedures

59

For parameter setting of auxiliary input reference, input motor rotation per 1V (r/min/V) to user constant INBGN .

When combined with Yaskawa Positionpack in positioning system drive, auxiliary input terminals are normally used as speed reference input. In this case, positioning loop gain is adjusted with the potentiometer <u>INBGN</u>.

6.2.5 Zero Clamp Speed Control

The zero clamp speed control mode can be selected by properly setting user constant Cn-01 (bits A and B). In this mode, when the motor rotating speed goes below the user constant Cn-0F (ZCLVL) setting, the speed reference is cut off to clamp the motor revolving speed to zero.

- The zero clamp operation starts when the P-CON signal is turned ON.
- In the zero clamp speed control mode, P/PI control changeover cannot be effected as in regular speed control because the P-CON signal serves as the zero clamp function ON/OFF signal.

6.2.6 Soft Start Function

The motor accel/decel time can be set up.

<Setup Procedure>

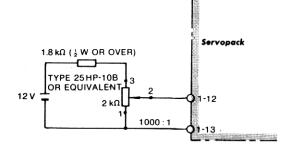
Enter as the SFSACC user constant the time (ms) required for the motor to reach the maximum rotating speed.

6.2.7 Jogging Function

Even if no speed reference is entered during a test run, the motor can be operated by a circuit board mounted switch. The jogging speed (r/min) can be varied by adjusting the JOGSPD user constant.

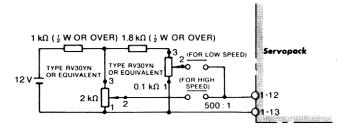
6.3 TORQUE CONTROL

In the torque control mode, the speed loop is disconnected so that the motor is driven according to the torque reference. This mode provides two submodes: torque control I and torque control II. Submode changeover can be effected by changing user constant Cn-01 (bits A and B).


6.3.1 Torque Control I

The torque reference voltage is applied between input terminals 1CN 12 and 13 from the Servopack incorporated control power supply (1CN-16, 48: +12 V; 1CN-17, 32, 47, 49: 0 V; 1CN-31, 46: -12 V) or external power supply.

The I/O relationship is fixed at 3 V/rated torque (see note below).

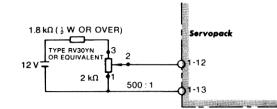

Note: If a rating other than 3 V is desired, contact your YASKAWA representative.

The method for giving torque reference voltage is described below. (1) For accurate (inching) torque setting

25HP-10B type: Multiple-rotation type, wire wound variable resistor (with dial MD10-30B4) made by Sakae Tsushin Inc.

(a) When Multiple-rotation Type, Wire Wound Variable Resistor is used

RV30YN type: Carbon-film variable resistor made by Tokyo Cosmos Electric. Low- and high-speed relays: Reed relay (SRF-B. SRG-B) made by Nippon Electric or equivalent, or low-level relay ($G_{2}A$ -432) made by Omron Corporation or equivalent.


Note: When a carbon resistor is used, a great residual resistance remains, and so the torque control range becomes approximately 500:1.

(b) When Carbon Variable Resistor is used

Fig. 6.6 Method for Giving Torque Reference Voltage (for Accurate Torque Setting)

(2) For relatively rough torque setting

2

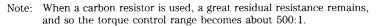
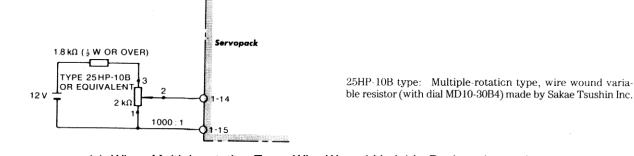
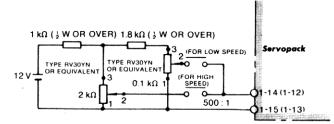


Fig. 6.7 Method for Giving Torque Reference Voltage (for relatively Rough Torque Setting as Compared with Fig. 6.6)

6.3.2 Torque Control II (Speed-Limited Torque Control + Speed Control)

- In the torque control II mode, torque control is exercised with the motor speed limited. Further, mode switching from torque control to speed control can be effected by turning ON the P-CON signal.
- In the torque control II mode, P/PI control changeover cannot be effected as in regular speed control because the P-CON signal serves as the torque/speed control mode changeover signal.
- The torque reference voltage is applied between input terminals 1CN 14 and 15 from the Servopack incorporated control power supply (1CN-16, 48: +12 V; 1CN-17, 32, 47, 49: 0 V; 1CN-31, 46: -12 V) or external power supply. The speed limit voltage (a positive voltage sets both speed limits) is applied between input terminals 1CN 12 and 13. The I/O relationship is fixed at 3 V/rated torque (see note below).


Note: If a rating other than 3 V is desired, contact your YASKAWA representative.


Torque reference voltage and speed limit voltage application procedure examples are given below.

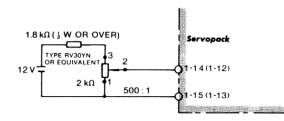
• For accurate (inching) torque or speed limit setting

The Servopack input terminal numbers shown in Figs. 6.8 and 6.9 are for torque reference voltage input. Parenthesized terminal numbers are for speed limit voltage input.

(1) For accurate (inching) torque setting or speed limiting

(a) When Multiple-rotation Type, Wire Wound Variable Resistor is used

RV30YN type: Carbon-film variable resistor made by Tokyo Cosmos Electric.


Low- and high-speed relays: Reed relay (SRF-B, SRG-B) made by Nippon Electric or equivalent, or low-level relay (G_z A-432) made by Omron Corporation or equivalent.

Note: When a carbon rsistor is used, a great residual resistance remains, and so the torque control or speed limiting control range becomes approximately 500:1.

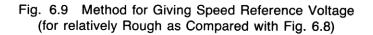
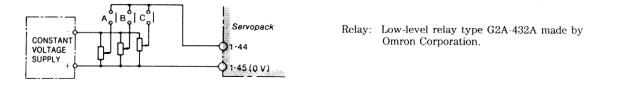
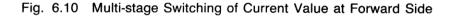

(b) When Carbon Variable Resistor is used

Fig. 6.8 Method for Giving Torque Reference or Speed Limiting Reference Voltage (for Accurate Speed Setting)

(2) For relatively rough torque setting or speed limiting setting

Note: When a carbon resistor is used, a great residual resistance remains, and so the torque control or speed limiting control range becomes about 500:1.


6.4 EXTERNAL CURRENT LIMIT REFERENCE CIRCUIT [P-CL, N-CL]

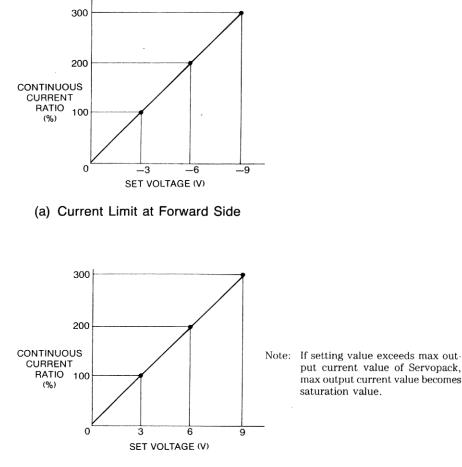

Current can be limited from the outside as well as within Servopack. The external current limit is used for the following cases:

• To protect the motor from overload current when an abnormal load lock occurs in the load.

• To change the current limit value according to the external sequence.

The current can be limited by multi-stage setting by the use of relays (Fig. 6.10). The same effect can be obtained by giving voltage signals making analog change.

6.4.1 Method of Giving External Current Limit Reference


23

Forward current and reverse current can be controlled independently. The forward current can be controlled by giving a reverse voltage (0 to -9.0 V) between Servopack terminals 1CN-44 and 45; the reverse current can be controlled by a forward voltage (0 to +9.0 V) between terminals 1CN-29 and 30.

The relation between the rated current of the motor and current limit values is rated current at 3.0 V for applicable motor. The power supply must use an internal resistance less than $2k\Omega$. The input resistance at Servopack side must be greater than $5k\Omega$. When external current is not restricted, contacts between terminals 1CN- (4) and (4) and between 1CN- (2) and (3) are opened.

6.4.2 Set Voltage and Current Limit Values

The relationship between set voltages of 0 to ± 9.0 V and current limit values ar e shown in Fig. 6.11. Setting precision is I 10%.

(b) Current Limit at Reverse Side

Fig. 6.11 Set Voltage and Current Limit Values

6.4.3 Current Limit when Motor is Locked

When locking a motor by applying a current limit, determine a current limit value less than 70% of the rated current of the motor. If the load condition requires a current limit exceeding the rated motor current, refer to Par. 6.5. (3) Overload detection level and make sure to unlock the motor before reaching the trip level.

Note that when the speed reference voltage is less than tens or so millivolts (affected by setting of user constant INBGN LOOPHZ), the motor lock current sometimes pulsates. If this is not desirable, the current pulsation can be removed by increasing the speed reference voltage.

6.5 PROTECTIVE CIRCUIT

Servopack provides functions to protect the body and motor from malfunctions.

(1) Dynamic brake function

Servopack incorporates a dynamic brake for emergency stop. This brake operates when:

- Alarm (fault detection) occurs.
- Servo ON command is opened.
- Main power supply is tuned off.
- Over travel (P/N-OT)

33

Normally, this dynamic brake is not applied while the motor stops, but can be made operational by parameter setting.

(2) Trouble detecting functions

Indication	Trouble	Detection	
8.1	[OC] Overcurrent	 Overcurrent flow in the main circuit. Overheat heat sink of Servopack. 	
8.2	[MCCB] Circuit Protector Trip	Circuit protecter tripped.	
8.3	(RG) Regeneration Trouble	Regenerative circuit not activated in Servopack.	
R.Y	[OV] Overvoltage	Excessively high DC voltage in the main circuit (approx 420V.	
₽. 5 □*	[OS] Overspeed	 Excessively large speed reference input. Over maximum speed reference voltage applied. 	
8.8	[UV] Voltage Drop	Low DC voltage in the main circuit after power ON. (150V or	
8. 7□*	[OL] Overload	Overload condition of motor and Servopack.	
Я. Ъ □*	[A∕D] A/D Error	Element error on the printed circuit board of Servopack.	
R .F 🗆*	Open Phase	Any one phase open in three-phase power supply.	
8.5 🗆*	[PG] Overrun Prevention	Wrong wiring of motor circuit or PG signal line.	
(1LED)	(CPU) CPU Error	Any error of CPU	
8.0 □*	Other Trouble Detection	Parameter error Main circuit detection section error.	

Table	6.1	Trouble	Detecting	Functions
-------	-----	---------	-----------	-----------

* Indicates the cause of the alarm signal classifficationed numerically.

1

(3) Servo alarm output [ALM+, ALM-]

If any trouble detection circuits in **Table 6.1** functions, the power drive circuit in the Servopack goes off, 7-segment LEDs indicate the operation condition and a servo alarm signal is output.

(4) Protective circuit operation

An alarm signal indicates some trouble. Check the cause and correct the trouble, and restart the operation. Before checking the cause, turn off the power to the main circuit to avoid danger. Apply the sequence so that the alarm signal turns off only the main circuit ((\mathbb{R}) , (\mathbb{S}) , (\mathbb{T})), as shown in **Figs. 6.1** and **6.2**. allows rapid reaction in the event of a malfunction. For traceback, refer to Par. 8.6 "Abnormal Traceback Mode."

CAUTION

When an alarm signal cuts off only the main circuit, set the speed reference to 0 V before supplying power to the main circuit to resume the operation.

(5) Resetting servo alarm

Servo alarm is reset with external signal input.

6.6 STATUS INDICATION

Status indication in the monitor panel consists of abbreviation indication and bit indication.

For the status indication mode operation of the monitor panel, refer to Par. 8, "Monitor Panel Operation".

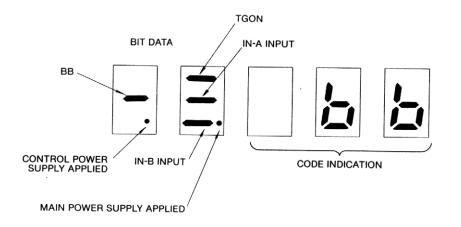


Fig. 6.12 Monitor Panel Status Indication

Table 6.2 and 6.3 show the contents of abbreviation indications.

Monitor Panel Indication	Conditions	
55	Base current is interrupted (BB)	
run	Under the current conduction	
Pot	Forward running is interrupted	
not	Reverse running is interrupted	

	Table	6.2	Status	Indication
--	-------	-----	--------	------------

Monitor Panel Indication	Detection	Erro	r Outpu	rt Code	0.44.1.1		
(Traceback Data)	Detection		1	2	SVALM	Remarks	
R. 02	Parameter breakdown	×	×	×	0	E ² PROM erro	
R. 83	Main circuit detection error	×	×	×	0		
8. 0 4	Parameter sefting error	×	×	×	0		
8. ID	Overcurrent	0	×	×	0		
8.11	Ground fault	0	×	×	0		
R. 20	MCCB trip	×	0	×	0		
<i>R.</i> 30	Regeneration error	0	0	×	\circ		
R. 40	Overvoltage	×	×	0	0		
R. 54	Feedback overspeed	0	×	0	0		
8. 52	Overspeed reference input	0	×	0	0		
R. 60	Undervoltage	×	0	0	0		
ור .8	Overload detection (high load)	0	0	0	0		
R. 72	Overload detection (low load)	0	0	0	0		
Я. Б /	Reference input read error	×	×	×	0	A/D error	
R. 62	External current limit read error	×	×	×	0	A/D error	
8. E 1	Overrun (Wrong wiring of motor circuit PG signal line)	0	×	0	0	Overrun prevention	
R. C2	Phase detection error (Wrong wiring or dis- connection of PG signal line : PU, PV, PW)	0	×	0	0	Overrun	
R. E 3	PA, PB-phasedisconnection of PG signal line	0	×	0	0	Overrun prevention	
R. F I	Open phase of power supply	×	0	×	0	provention	
R. F2	Power supply rise error	×	0	×	0		
	CPU error	×	×	×		Non-alarm indication	

Table 6.3 Trouble Indications with Monitor Panel and Error Output Code (SVALM and 3-bit Output)

 \bigcirc Output transistor \bigcirc

 \times Output transistor OFF

6.7 PRECAUTIONS FOR APPLICATION

6.7.1 Minus Load

The motor is rotated by the load; it is impossible to apply brake (regenerative brake) against this rotation and achieve continuous running.

Example: Driving a motor to lower objects (with no counterweight)

Since Servopack has the regenerative brake capability of short time (corresponding to the motor stopping time), for application to a minus load, contact Yaskawa representative.

6.7.2 Load Inertia (JL)

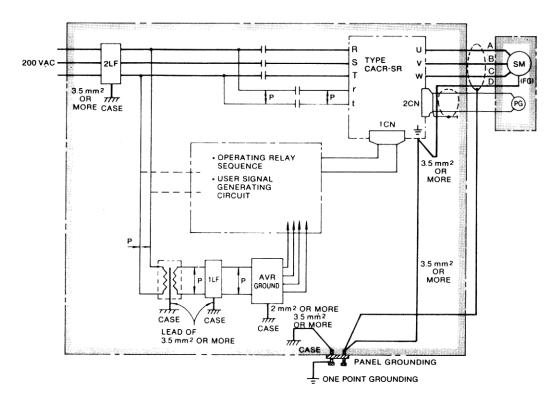
The allowable load inertia JL converted to the motor shaft must be within five times the inertia of the applicable AC servomotor. If the allowable inertia is exceeded, an overvoltage alarm may be given during deceleration. If this occurs, take the following actions:

- Reduce the current limit.
- Slow down the deceleration curve.
- Decrease the maximum speed.

For details, contact Yaskawa representative.

6.7.3 High Voltage Line

If the supply voltage is 400/440 V, the voltage must be dropped three-phase, 400/440V to 200 V by using a power transformer. **Table 6.5** shows the transformer selection. Connection should be made so that the power is supplied and cut through the primary side of the transformer. Single-phase 100 V class power supply should not be used.


6.8 PRECAUTIONS OF OPERATION

6.8.1 Noise Treatment

Servopack uses is a power transistor in the main circuit. When these transistors are switched, the effect of $\frac{di}{dt}$ or $\frac{dv}{dt}$ (switching noise) may sometimes occur depending on the wiring or grounding method.

The Servopack incorporates CPU. This requires wiring and treatment to prevent noise interference. To reduce switching noise as much as possible, the recommended method of wiring and grounding is shown in Fig. 6.13.

(1) Grounding method

TP: Twisted cable

Notes:

1. Use wires of 3.5mm² or more for grounding to the case (preferably flat-woven copper wire).

2. Connect line filters observing the precautions as shown in (2) Noise filter installation.

Fig. 6.13 Grounding Method

• Motor frame grounding

When the motor is at the machine side and grounded through the frame, $Cf \frac{dv}{dt}$ current flows from the PWM power through the floating capacity of the motor. To prevent this effect of current, motor ground terminal E (motor frame) should be connected to terminal E of Servopack. (Terminal E of Servopack should be directly grounded.).

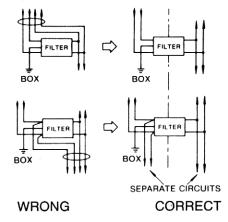
• Servopack SG 0 V

Noise may remain in the input signal line, so make sure to ground SG 0 V. When motor wiring is contained in metal conduits, the conduits and boxes must be grounded. The above grounding uses one-point grounding.

(2) Noise filter installation

When noise filters are installed to prevent noise from the power line, the block type must be used. The recommended noise filter is shown in Table 6.4. The power supply to peripherals also needs noise filters.

NOTE


If the noise filter connection is wrong, the effect decreases greatly. Observing the precautions, carefully connect them as shown in Figs. 6.14 to 6.17.

Servopack	Applicable	Recommended Noise Filter				
Type CACR-	Noise Filter	Туре	Specifications			
SR02BE SR03BE SR05BE	~~~~~	LF-305	Three-phase 200 VAC class, 5A			
SR07BE	Ţ	LF-310	Three-phase 200 VAC class, 10A			
SR10BE SR15BE	CORRECT	LF-315	Three-phase 200 VAC class, 15A			
SR20BE		LF-320	Three-phase 200 VAC class, 20A			
SR30BE	- VĮV	LF-330	Three-phase 200 VAC class, 30A			
SR44BE	WRONG	LF-340	Three-phase 200 VAC class, 40A			

Table 6.4 Recommended Noise Filter

Note: Noise filter made by Tokin Corp.

(a) Separate the input and output leads. Do not bundle or run them in the same duct.

- Fig. 6.14
- (b) Do not bundle the ground lead with the filter output line or other signal lines or run them in the same duct.

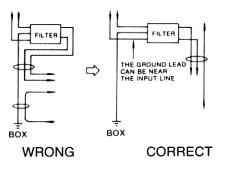


Fig. 6.15

(c) Connect the ground lead singly to the box or the ground panel.

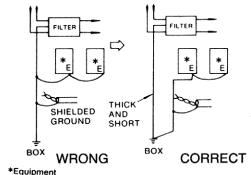
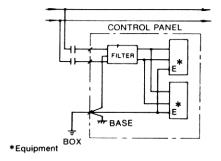



Fig. 6.16

(d) If the control panel contains the filter, connect the filter ground and the equipment ground to the base of the control unit.

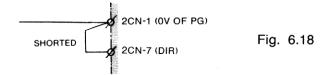
6.8.2 Power Line Protection

The Servopack is operted through the commercial power line (200 V). To prevent the power line accidents due to grounding error, contact error, or to protect the system from a fire, circuit breakers (MCCB) or fuses must be installed according to the number of Servopacks used (**Table 6.5**).

A quick-melting fuse cannot be used, because the Servopack uses the capacitor-input power supply and the charging current might melt such a fuse.

		1 2
Servopack Type CACR-	Power Capacity* per Servopack	Current Capacity per MCCB or Fuse
SR02BE · SR03BE	0.65 kVA	5 A
SR05BE	1.1 kVA	5 A
SR07BE	1.5 kVA	8 A
SR10BE	2.1 kVA	8 A
SR15BE	3.1 kVA	10 A
SR20BE	4.1 kVA	12 A
SR30BE	6.0 kVA	18 A
SR44BE	8.0 kVA	24 A

Table 6.5 Power Supply Capacity and MCCB or Fuse Capacity


* Values at rated load.

6.9 APPLICATION

122

6.9.1 Connection for Reverse Motor Running

If the machine construction requires that the normal forward reference is used for reverse motor running and the normal reverse reference for forward running, short across 2CN-1 and 2CN-7 of connector 2CN for the PG. In this case, change of motor and PG connection is not required.

In forward running reference, frequency dividing output from Servopack applies phase-B lead.

6.10 MOTOR SPEED MEASUREMENT AND TORQUE REFERENCE

When an instrument is connected to measure speed and torque, make the connection as shown in Fig. 6.19, using a DC ammeter of ± 1 mA (both swing).

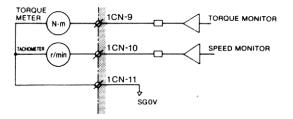


Fig. 6.19 Speed and Torque Measurement

- Torque monitor output (1CN-9): $\pm 3.0V \pm 10\%/100\%$ torque
- Speed monitor output (1CN-10):
 M, F, D series ±4.0 V ±5%/1000 r/min
- G, S series $-\pm 2.0 \text{ V} \pm 5\%/1000 \text{ r/min}$
- Instrument: ±1 mA (both swing) ammeter. Use ammeter of DCF-6 or DCF-12N by Toyo Instrument or equivalent.
- Example: When an M Series motor (rated speed: 1000 r/min) is used, and speeds are to be measured up to the maximum speed (2000 r/min) in both directions, use ±8V(both swing) DC voltmeter.

7. USER CONSTANTS

The Servopack offers the following user constants. These constants can be set up variously to suit the system requirements. Understand the functions of the constants before using them. For constant setup or adjustment, use the monitor panel (see Section 8, "MONITOR PANEL OPERATIONS").

- (1) Speed Reference Adjustment Gain: Cn-03 INBGN
- IN-B input motor rotating speed adjustment constant. The adjustment range is from 0 through 2000 r/min/V.
- For position control purposes, the loop gain increases with an increase in this gain setting.
- This constant is preset at the factory to rated rotating speed/10 V prior to shipment.
- (2) Speed Loop Gain: Cn-04 LOOPHZ
- Speed controller proportional gain. The adjustment range is from 20 through 500 Hz (when equivalent inertia used).
- This constant is preset at the factory to 50 Hz prior to shipment.
- (3) Speed Loop Integration Time Constant: Cn-05 PITIME
- Speed controller integration time. The adjustment range is from 2 through 5112 ms.
- This constant is preset at the factory to 20 ms prior to shipment.
- (4) Emergency Stop Torque: Cn-06 EMGTRQ
- Overtravel stop braking torque setting (set in a percentage relative to the rated motor torque). The setting range is from 0 through MAX (%).
- When the overtravel P/N-OT (1CN-26, 41) operates, the brake stop mode can be selected according to this torque setting (Cn-01 bit 7).
- This constant is preset at the factory to MAX (%) prior to shipment.
- (5) Soft Start time: Cn-07 SFSACC

56

- This constant refers to the time required for the speed reference to change from 0 (r/min) to the maximum rotating speed or from the maximum rotating speed to 0 (r/min). The setting range is from 0 through 10,000 ms.
- This constant is preset at the factory to 0 ms prior to shipment.
- For position control purposes, this constant should normally be set to 0 ms.
- (6) Forward Running Torque Limit: Cn-08 TLMTF
- Forward running motor torque limit. The setting range is from 0 through MAX (%)
- This constant is preset at the factory to MAX (%) prior to shipment.
- (7) Reverse Running Torque Limit: Cn-09 TLMTR
- Reverse running motor torque limit. The setting range is from 0 through MAX (%).
- This constant is preset at the factory to MAX (%) prior to shipment.

(8) PG Division Ratio: Cn-0A PGRAT

- The detection pulses (A and B pulses) fed from the PG (optical encoder) are divided by this ratio setting and transferred to connector 1CN terminals 33 and 36.
- This ratio setting refers to the number of output pulses per revolution. The setting range varies with the PG.

1 to number of PG pulses (integer) (n < 32, integer)

For the 2500P/R PG, only the above 7 different ratios are provided.

(9) Zero Speed Level: Cn-0B TGONLV

- Motor zero speed judgment level. The setting range is from 10 through 200 r/min.
- When the motor rotating speed lowers below this setting, sequence output TGON turns OFF (the path between 1CN terminals 22 and 23 is closed).
- This constant is preset at then factory to 20 r/min prior to shipment.

(10) Mode Switch (Torque Reference)

• Mode switch actuation level setting. When accel/decel involving speed controller output saturation is to be implemented, mode switching is effected from PI control to P control in order to improve the transition characteristics. This constant refers to the detection point setting at which such mode switching is effected. The mode switch allows you to select three different detection points and set up their level.

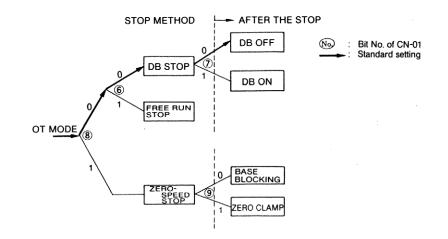
Torque reference (speed controller output) Speed reference Motor acceleration detection

• Detection point selection is made by performing user constant Cn-01 bit setup.

(11) Zero Clamp Level: Cn-OF ZCLVL

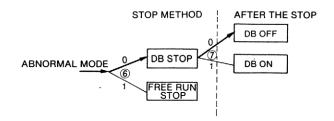
- Motor rotating speed level at which zero clamping is effected. The setting range is from 0 through 100 r/min.
- In the zero clamp speed control mode (set up by Cn-01 bits A and B), the P-Con speed reference is disconnected to clamp the motor rotating speed to zero when the motor rotating speed falls below this setting.

(12) Jogging Speed: Cn-10 JOGSPD


- This constant refers to the jogging operation speed. The setting range is from 0 through 1000 r/min.
- In the jogging mode, operational instructions are issued from the setup panel.
- This constant is preset at the factory to 100 r/min prior to shipment.
- (13) Number of Encoder Pulses: Cn-11 PULSNO
- This constant indicates the number of pulses per encoder revolution. The setting range is from 1000 through 32767 (P/R).

(14) Delay Time between Braking command Output and SVOFF Operation: Cn-12 BRKTIM

- The braking command output is generated according to Cn-01 bit E.
- This constant indicates the delay time between braking command output and SVOFF operation for a brake attached motor. The setting range is from 0 through 50 (\times 10 ms).
- (15) Sequence Input, Reference Signal Emergency Stop Method, Control Mode, and Mode Switch Selection


Use the user constant Cn-01 memory switch for selection purposes (see Table 7.1 "User Constant Cn-01 List" for memory switch assignments).

In accordance with sequence (1) or (2) below, select the emergency stop method suitable for the system.

(a) Abnormal Stop Sequence at Overtravel (OT) Mode

63

(b) Abnormal Stop Sequence other than Overtravel (OT) Mod

Fig. 9.1 Abnormal Stop Sequence

7.1 USER CONSTANT Cn-01 (MEMORY SWITCH)

Table 7.1 shows memory switches of user constants Cn-01.

			Table 7.1 User Constant Cri-of (Memory Switch) Cri-o2	:Spare		
Selection	Bit No.	Setting	Conditions	Standard		
Sequence Input	0	0	Servo ON/OFF by external input (SV-ON).	0		
	0	1	The servo is ON at all times.			
		0	The external input (SEN) is used.			
	• 1	1	Regardless of the SEN signal presence, the Servopack automatically conculdes that the "H" level prevails.			
Selection	2	0	The P-OT signal prohibits forward running.	- 0		
		2 1 Forward running is permitted at all times.				
	-	0	The N-OT signal permits reverse running.	0		
	3	1	Reverse running is permitted at all times.			
		0	The IN-A input is used.			
Input Signal	4	1	Regardless of the IN-A input presence, the Servopack concludes that the IN-B input is 0.			
Selection		0	The IN-B input is used.			
	5	1	Regardless of the IN-B input presence, the Servopack concludes that the IN-B input is 0.	0		
	6	0	<db stop=""> The dynamic brake stops the motor.</db>			
		1	<coasting stop="" to=""> The motor is freed and brought to a stop.</coasting>	0		
	7	0 <db after="" db="" off="" stop=""> The dynamic brake is turned C</db>	<db after="" db="" off="" stop=""> The dynamic brake is turned OFF after the motor is stopped.</db>	0		
Abnormal Stop Selection		1	<db after="" continuously="" db="" on="" stop=""> The dynamic brake remains activated after the motor is stopped.</db>	U		
Selection	Note 1 8	0	The overtravel state stop method agrees with bit 6.			
		1	<overtravel speed="" stop="" zero=""> In the overtravel state, the motor is stopped at the torque setting defined by user constant Cn-06.</overtravel>	0		
	Note 2	0	In the overtravel state, base blocking (BB) is implemented after zero speed stop.	0		
	9	1	In the overtravel state, zero clamping is effected after zero speed stop.	7 0		
Mode Switch Selection (for Speed Control only)	Note 3 D∙C	0.0	<torque reference=""> Based on the torque reference level defined by user constant Cn-0C.</torque>			
		0.1	<speed reference=""> Based on the speed reference level defined by user constant CN-0D.</speed>	00		
		1.0	< Acceleration > Based on the acceleration level defined by user constant Cn-0E.			
		1.1	<none> The mode switch function is not provided.</none>			
Presence	E	0	The braking command function is not provided.	0		
of External Brake		1	The braking command function is provided.			

Table 7.1	User Constant	Cn-01	(Memory Switch)	
-----------	---------------	-------	-----------------	--

Cn-02:Spare

-

Notes: 1. The abnormal stop method in the torque control mode complies with bit 6.

2. Selects a state prevailing when the zero speed stop method has been selected for the overtravel state (bit 8).

3. Selects a mode switch operating condition. When the mode switch operates, the speed control mode changes

to P control. However, this is effective for speed control only.

Option	Bit No.	Setting	Description	Reference Input	Sequence Signal Input	Standard
Control Mode Selection	B • A	B•A 0•0	<speed control=""> Regular speed control. The P-CON signal (CN1-24) is used to effect P/PI control changeover. <zero clamp="" control="" speed=""></zero> </speed>	Speed reference (IN-A) Auxiliary reference input (IN-B)	P-CON OFF: PI control ON: P control	0•0
			 After the motor is stopped (ZCLVL), the speed reference is disconnected to execute the zero speed stop function. The P-CON signal (CN1-24) is used to turn ON and OFF the zero clamp function. 	,	OFF: Zero clamp function OFF ON: Zero clamp function ON	
		1•0	<torque control="" i=""> The motor output torque is controlled by the torque reference (IN-A). The IN-B cannot be used. </torque>	Torque reference (IN-A)	None	
		1•1	< Torque control II> • The P-CON signal (CN1-24) is used for torque/speed control mode changeover.	Torque control mode Torque reference (IN-B) Speed limit (IN-A)	P-CON OFF: Torque con- trol ON: Speed con- trol	
			 Torque control mode The motor output torque is controlled by the torque reference (IN-B). 	Speed control mode Speed reference (IN-A)		
			The speed limit can be entered from outside (IN-A). The IN-A voltage (+) limits both the forward and reverse running speeds. MOTOR SPEED	Notes: • When the speed is outside the speed control range, the torque proportional to the speed differ- ence from the limit is negatively fed back to place the speed within the limit. Therefore, the actual motor rotating speed limit varies with the load condi- tions.		
			SPEED LIMIT RANGE	 If the torque reference continu- ously reduces the motor speed, due caution must be exercised. If such a condition occurs, contact your YASKAWA representative. 		
			Speed control mode			
			 The speed reference is entered from the IN-A. The IN-B cannot be used. 			
Reverse Rotation		0	CCW: Forward Running			
Mode Selection	0	1.	CW: Forward Running			0
Spare	1 to F		Do not adjust.			

Table 7.1 User Constant Cn-01 (Memory Switch) List (Cont'd) Cn-02: Reserved.

125

7.2 USER CONSTANT Cn-03 to Cn-12 (CONSTANT SETTING)

Table 7.2 shows user constants (constant setting).

	User Constant	Code	Name	Unit	Lower Limit	Upper Limit	Setting before Shipment	Remarks
Constants for Gains	Cn-03	INBGN	Speed Reference Adjustment Gain	(r/min)/v	0	2000	Rating/10V	
	Cn-04	LOOPHZ	Speed Loop Gain	Hz	20	500	40	
	Cn-05	PITIME	Speed Loop Integral Time Constant	ms	2	512	20	
Constants for Torque	Cn-06	EMGTRQ	Emergency Stop Torque	%	0	Maximum Torque	Maximum Torque	OT Mode
	Cn-08	TLMTF	Forward Torque Limit	%	0	Maximum Torque	Maximum Torque	
	Cn-09	TLMTR	Reverse Torque Limit	%	0	Maximum Torque	Maximum Torque	
5	Cn-07	SFSACC	Soft Start Time	ms	0	10000	0	
ants fo ences	Cn-0B	TGONLV	Zero-speed Level	r/min	10	200	20	
Constants for Sequences	Cn-0F	ZCLVL	Zero-clamp Level	r/min	0	100	10	
	Cn-12	BRKTIM	Delay Time from Brake Reference to SVOFF	10ms	0	50	20	
Constants for Encoder Pulses	Cn-0A	PGRAT	PG Frequency Dividing Ratio Setting	P/R	1000	32768	PG Pulse	
	Cn-11	PULSNO	Number of Pulses	P/R	1000	32768	PG Pulse	
Constants for Others	Cn-0C	TRQMSW	Mode Switch (Torque Reference)	%	0	Maximum Torque	200	
	Cn-0D	REFMSW	Mode Switch (Speed Reference)	r/min	0	Maximum Speed	0	
	Cn-0E	ACCMSW	Mode Switch (Accelerating Speed)	10(r/min)/S	0	3000	0	
	Cn-10	JOGSPD	JOG Speed	1r/min	0	Maximum Speed	100	
	Cn-13	TCRFGN	Torque Reference Gain	1/10V Rated Torque	10	100	30	
	Cn-14	TCRLMT	Speed Limit in Torque Control I	r/min	0	Maximum Speed	Maximum Speed	
	Cn-15	BRKSPD	Brake Timing at Motor Rotating [Speed Level that Outputs] Brake Reference	r/min	0	Maximum Speed	100	
	Cn-16	BRKWA1	Brake Timing at Motor Rotating Waiting Time from SVOFF until Brake Reference is output	10ms	10	100	50	
	Cn-17	TRQFIL	Torque Reference Filter Time Constant	100ms	4	250	4	

Table 7.2 User Constant Cn-03 to Cn-12 (Constant Setting)

8. MONITOR PANEL OPERATION

8.1 SWITCH OPERATION

Fig. 8.1 shows the monitor panel. Operating control switches SW1 through SW4 are used to execute the $f \cdot 1$ through $f \cdot 7$ functions. Functions $f \cdot 1$ through $f \cdot 7$ vary with monitor panel mode.

Notes:

- 1. The monitor panel constant setup data are retained even after the power is turned off.
- 2. Even if the power is turned off after abnormal occurrence, the abnormal data are retained in memory. Therefore, it is possible to check the abnormal data after the power is turned back on.
- 3. The monitor mode can be changed even during operations.

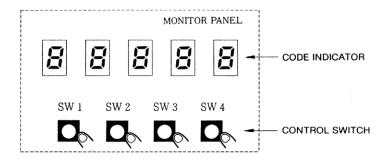


Fig. 8.1 Monitor Panel

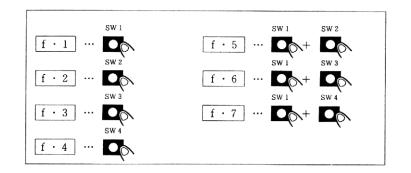


Fig. 8.2 Description of Switch Function

8.2 FUNCTION OF MONITOR PANEL

Table 8.1 shows the monitor panel functions Note that the status display mode prevails upon control power ON. To change the mode, use switch SW4 as shown in Fig. 8.3.

Mode	Function			
State Indication Mode	Various States Indication • Base Block • On Operation • Trouble For details, refer to Table 8.2			
	Refer to "User Constant Setting."			
Setting Mode	 Operation (JOG) from Monitor Panel Speed Reference Offset Adjustment 			
Monitor Mode	Various Monitoring • Speed • Speed Reference • Torque Reference • Number of Pulses from Origin (Phase-U) • Electrical Equipment • Interior Status Bit			
Abnormal Traceback Indication Mode	Trouble Indication of the past			

Table 8.1 Monitor Panel Functions

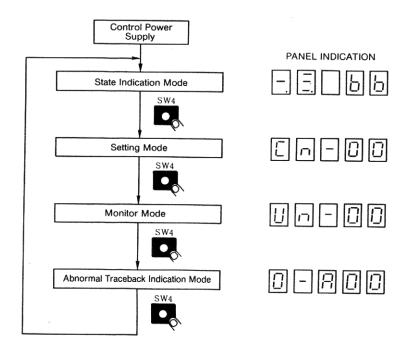
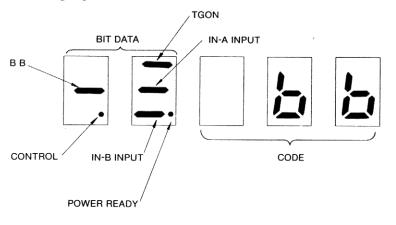


Fig. 8.3 Mode Changeover


8.3 STATUS INDICATION MODE

When this mode is selected, the condition of Servopack is indicated with bit and code as shown in Fig. 8.4. Fig. 8.2 shows the bits and the conditions. Fig. 8.5 shows the function allocations of switches.

- **RST** : Becomes alarm reset switch.
- SET : Changes state indication mode into setting mode.

Panel Display

144

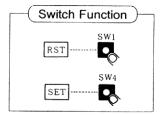


Fig. 8.4 Status Indication

Table	8.2	Codes	and	Conditions
-------	-----	-------	-----	------------

Code	Condition						
55	Base Block						
run	On Operation						
Pot	Forward Running Interrupted						
not	Reverse Running Interrupted						
R. 00							
8. O I	Alarm Contents Refer to Par. "6•6 Status Indication"						
2							

8.4 SETTING MODE

In this mode, the following operations can be performed.

- User constant setup and check
- Controlling operations from the monitor panel
- Speed reference offset adjustment

8.4.1 User Constant (Data) Setup and Check

The switch functions are indicated in Fig. 8.5.

Panel Display

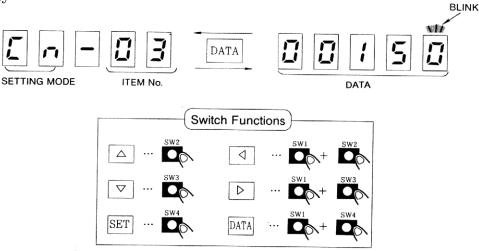


Fig. 8.5 Switch Functions for User Constant Setting

- **1** Set up the item number with the \triangle , ∇ , \triangleleft , and \triangleright keys.
 - With the \square and \triangleright keys, choose a setup digit. The chosen digit then starts blinking to indicate that its numerical value can be changed.
 - With the \triangle and ∇ keys, increase or decrease the numerical value until the desired value is obtained.
- 2 With the DATA key, display the data related to the selected item number.
- **3** With the \triangle , ∇ , \triangleleft , and \triangleright keys, set up the data.
- 4 Store the data with the SET key.
- **5** Repeat steps 1 through 4 as needed.
- 6 With the DATA key, return to the item No. display state.
- **7** Using the <u>SET</u> key, switch from the setting mode to the monitor mode.

8.4.2 User Constant (Memory Switch) and Check

User constant Cn-01 can be set up or checked as memory switch bits. The procedures for item number setup and data display are the same as indicated in Par. 8.4.1.

The switch functions provided after bit data display are indicated in Fig. 8.6.

Panel Display

38

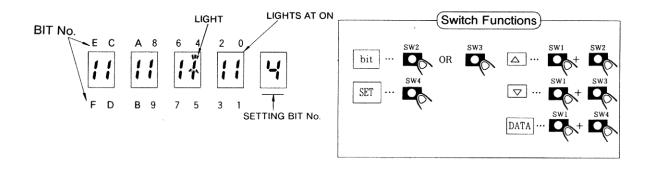
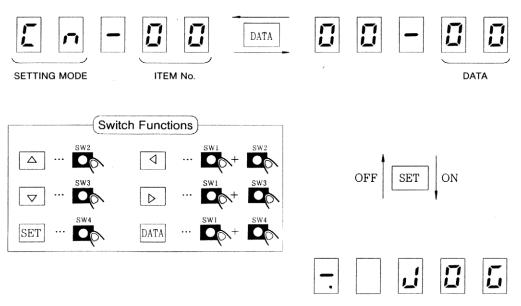


Fig. 8.6 Switch Functions Provided after Bit Data Display


- 1 With the \triangle and ∇ keys, enter the setup memory switch number at the far right end of the panel.
- 2 With the bit key, set the memory switch to ON or OFF (either switch SW2 or SW3 can be used). The panel indication comes on when the switch is ON, and goes off when the switch is OFF.
- **3** Repeat steps 1 and 2 as needed.
- 4 With the DATA key, return to the item No. display state.
- **5** Using the SET key, switch from the setting mode to the monitor mode.

8.4.3 Monitor Panel Controlled Operation Mode Selection and Operating Procedure

(1) Monitor Panel Controlled Operation Mode Selection

When user constant Cn-00 is set to 00, the operations are to be controlled from the monitor panel. The switch functions are indicated in Fig. 8.7.

Panel Display

Monitor Panel Controlled Operation Mode Display

Fig. 8.7 Switch Functions in Monitor Panel Controlled Operation Mode

1 Select the item number 00 with the \triangle , ∇ , \triangleleft and \triangleright keys.

2 With the DATA key, display the data related to the selected item number.

3 With the \triangle , ∇ , \triangleleft and \triangleright keys, select the number 00.

4 With the SET key, turn ON or OFF the monitor panel controlled operation mode.

5 With the DATA key, return to the item No. display state.

6 Using the SET key, switch from the setting mode to the monitor mode.

(2) Monitor Panel Controlled Operation Procedure

For speed reference adjustment, use user constant Cn-10 (see Par. 8.4.1).

The switch functions provided for monitor panel controlled operations are indicated in Fig. 8.8.

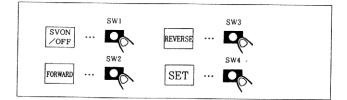


Fig. 8.8 Switch Functions for Monitor Panel Controlled Operations

- With the SVON/OFF switch, effect SVON/SVOFF changeover.
- **2** The motor runs in the forward direction while the FORWARD key is held down.
- 3 The motor runs in the reverse direction while the **REVERSE** key is held down.
- 4 The <u>SET</u> key is used to switch from the monitor panel controlled operation mode to the user constant Cn-00 data display state.
- 5 With the DATA key, return to the item No. display state.

28

6 Using the <u>SET</u> key, switch from the setting mode to the monitor mode.

8.4.4 Speed Reference Offset Adjustment

When user constant Cn-00 is set to 01, the system enters the speed reference off set adjustment mode. The switch functions are indicated in Fig. 8.9.

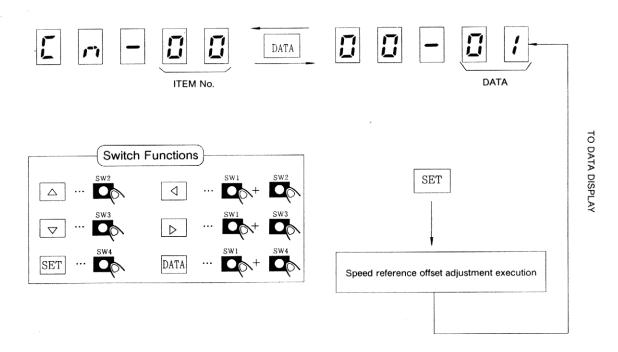


Fig. 8.9 Speed Reference Offset Adjustment

- **1** Select the item number 00 with the Δ , ∇ , \triangleleft and \triangleright keys.
- 2 With the DATA key, display the data related to the selected item number.
- **3** With the \triangle , ∇ , \triangleleft and \triangleright keys, select the number 01.
- 4 Apply a desired zero speed reference voltage between speed reference input terminals IN-A and IN-B (a voltage of 0V should normally be applied).
- **5** With the <u>SET</u> key, make speed reference offset adjustment and return to the user constant Cn-00 data display state.
- 6 With the DATA key, return to the item No. display state.
- **7** Using the SET key, switch from the setting mode to the monitor mode.

8.4.5 Clearing Abnormal Traceback Data

When user constant Cn-00 is set to 02, abnormal traceback data are cleared. The switch functions are indicated in Fig. 8.10.

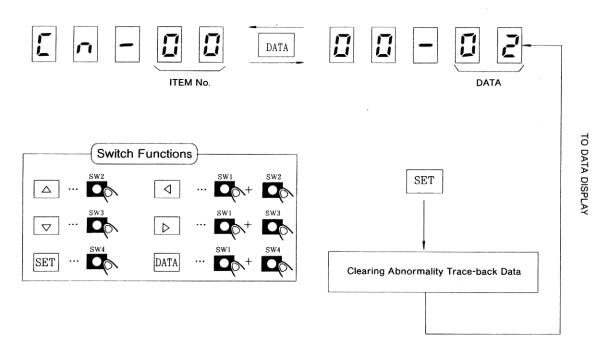


Fig. 8.10 Speed Reference Offset Adjustment

- **1** Select the item number 00 with the \triangle , ∇ , \triangleleft and \triangleright keys.
- **2** With the DATA key, display the data related to the selected item number.
- **3** With the \triangle , ∇ , \triangleleft and \triangleright keys, select the number 02.
- 4 With the <u>SET</u> key, clear abnormal trace-back data and return to the user constant Cn-00 data display state.
- 5 With the DATA key, return to the item No. display state.
- **6** Using the SET key, switch from the setting mode to the monitor mode.

8.5 MONITOR MODE

In this mode, the speed reference, torque reference, and other data can be observed on the monitor panel.

Table 8.3 lists the data that can be monitored. The switch functions are indicated in Fig. 8.10.

Moniter No.	Data Monitored						
00	Feedback Speed (r/min)						
01	Speed Reference (r/min)						
02	Torque Reference (%)						
03	No. of Pulses from Phase-U edge (Phase-U)						
04	Electrical Angle (1/10deg)						
05	Internal Status Bit Display (Refer to Table 8.4.)						

Table 8.3 Data Monitored

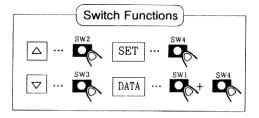



Fig. 8.10 Switch Functions in Monitor Mode

.

Bit. No.	Symbol	Contens
1	SVALM	Servo Alarm
2	DBON	Dynamic Brake ON
3	DIR	Reverse Rotation Mode
4	CLT	Current Limit
(5)	TGON	Motor Running
6	MSON	Mode Switch ON
7	ACON	AC Power Supply ON
(8)	SVRDY	Servo Ready
9	B-ON	Motor Under Current Conduction
10	PA	Phase-A
(1)	PB	Phase-B
12	PC	Phase-C
(13)	PU	Phase-U
(14)	PV	Phase-V SR BD only
(15)	PW	Phase-W
(16)	SVON	Servo ON
1)	P-CON	P Operation Input
(18)	P-OT	Forward Running Inhibit Input
(19)	N-OT	Reverse Running Inhibit Input
20	SEN	SEN Signal Input (-SR BY only)

- **1** With the \triangle and ∇ keys, select a desired monitor No.
- **2** With the DATA key, initiate monitor display.

12

- **3** Using the DATA key, return to the monitor No. selection state.
- 4 With the SET key, switch from the monitor mode to the abnormal traceback mode.

8.6 ABNORMAL TRACEBACK MODE

In this mode, the information on past abnormal occurrences can be displayed.

- The information on up to 10 past abnormal occurrences can be stored.
- When an abnormality is reset or the control power is turned on, trace-back data A. 99 is saved (These data are also counted as one of a total of 10 stored items of abnormal information).
- For the relationship between traceback data and abnormal descriptions, refer to Table 8.4. The switch functions are indicated in Fig. 8.11.

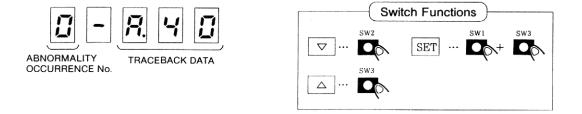


Fig. 8.11 Switch Functions in Abnormal Traceback Mode

- **1** With the \triangle and ∇ keys, increase or decrease the abnormal occurrence number. The abnormal information related to the selected number is then displayed. (The higher the abnormal occurrence number, the older the abnormal occurrence.)
- 2 With the <u>SET</u> key, switch from the abnormal trace-back mode to the status display mode.

Monitor Panel Indication (Traceback Data)	Detection
R. 02	Parameter Breakdown
R. 03	Main circuit detection error
<i>R.</i> 04	Parameter setting error
8. IO	Overcurrent
8.11	Ground fault
<i>R. 20</i>	MCCB trip
R. 30	Regeneration error
8. KO	Overvoltage
R. S (Feedback overspeed
R. 52	Overspeed reference input
R. 60	Undervoltage
ור .R	Overload (high load)
R. 72	Overload (low load)
8.51	Reference input read error
R. 62	External current limit read error
8. C I	Overrun (wrong wiring of motor circuit PG signal line)
8. 22	Phase detection error (wrong wiring or disconnection of PG signal line: PU, PV, PW)
8. 53	PA,PB-phase disconnection of PG signal line
R. F (Open phase of power supply
8. 82	Power supply rise error
	CPU error

23

Table 8.5 Trouble Indications with Monitor Panel and Traceback Data

.

9. INSTALLATION AND WIRING

9.1 RECEIVING

This motor has been put through severe tests at the factory before shipped. After unpacking, however, check for the following.

- Nameplate ratings meet your requirements.
- It has sustained no damage while in transit.
- The output shaft should be hand-rotated freely. However, the brake-mounted motor does not rotate as it is shipped with the shaft locked.
- Fastening bolts and screws are not loose.

If any part of the motor is damaged or lost, immediately notify your YASKAWA representative giving full details and nameplate data.

9.2 INSTALLATION

9.2.1 AC Servomotor

AC Servomotor can be installed either horizontally or vertically.

(1) Before mounting

Remove anticorrosive paint on shaft extension and flange surface with thinner before connecting the motor to the driven machine. See Fig. 9.1.

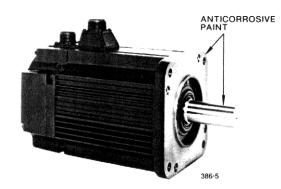


Fig. 9.1 Anticorrosive Paint to be Removed

(2) Location

Use the motor under the following conditions.

- Indoors
- Free from corrosive and/or explosive gases or liquids
- Ambient temperature: 0 to $+40^{\circ}$ C
- Clean and dry
- Accessible for inspection and cleaning

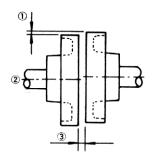
If the AC servomotor is subject to excessive water or oil droplets or mist, protect the motor with a cover. The motor can withstand a small amount of splashed water or oil (except for C series).

It is recommended that the motor be mounted with its connector placed down.

(3) Environmental conditions

Ambient Temperature: 0 to $+40^{\circ}$ C

Storage Temperature: -20 to $+60^{\circ}$ C


Humidity: 20% to 80% RH (non-condensing)

(4) Load coupling

347

True alignment of motor and driven machine is essential to prevent vibration, reduced bearing wear and coupling life, or shaft and bearing failures.

Use flexible a coupling with direct drive. The alignment should be made in accordance with Fig. 9.2.

① Measure the gap between the straightedge and coupling halves at four equidistant points of the coupling. The each reading should not exceed 0.03 mm (0.0012 in.).

Align the shafts.

(3) Measure the gap between the coupling faces at four equidistant points around the coupling rim with thickness gage. The maximum variation between any two read ings should not exceed 0.03 mm (0.0012 in.).

Fig. 9.2 Alignment of Coupling

(5) Allowable bearing load

Avoid both thrust and radial loads to the motor shaft. If unavoidable, never exceed the values in Tables 4.1 to 4.5.

9.2.2 Servopack

(1) Installation

The Servopack type CACR-SREEEBE is mounted on the base as standard.

(2) Location

• When installed in a panel:

Keep the temperature around Servopack at 55°C or below. (Fig. 9.3)

• When installed near a heat source:

Keep the temperatuer around Servopack below 55°C. (Fig. 9.4)

• If subjected to vibration:

Mount the unit on shock absorbing material.

• If corrosive gases are present:

Avoid locations where corrosive gases exist as it may cause extensive damage over long use. Especially vulnerable are switching operation of contactors and relays.

• Unfavorable atmospheric conditions:

Select a location with minimum exposure to oil, water, hot air, high humidity, excessive dust or metallic particles.

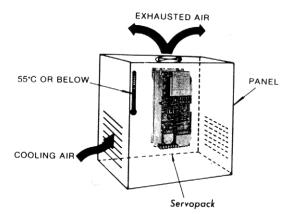


Fig. 9.3 Typical Layout for Panel Mounting

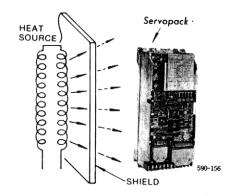
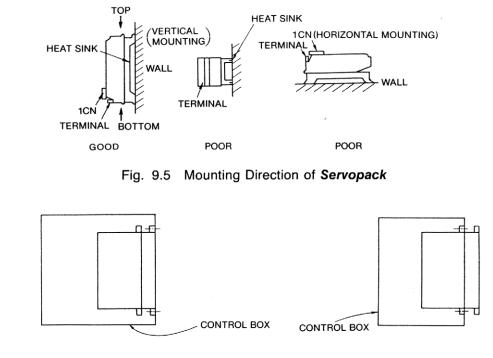
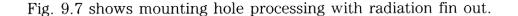



Fig. 9.4 Protection Against Heat Radiation

(3) Mounting Direction

Mount the unit vertically on the wall using the mounting holes (4) on the base plate, with main terminals at the bottom. (Fig. 9.5)



(a) Usual Mounting

25

(b) Mounting with Radiation Fin out

Fig. 9.6 Method of Mounting

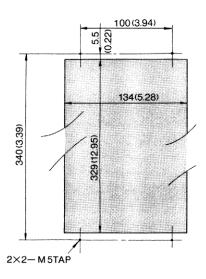


Fig. 9.7 Mounting Hole Processing in mm (inch)

(4) Precautions

• Mounting Pitch

Standard mounting pitch is 150 mm (5.91 in). If panel inside circulation is sufficient, such as when housed into the panel, 145 mm (5.71 in) is also available.

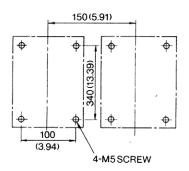
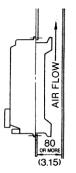
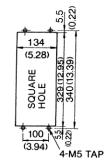



Fig. 9.8 Mounting Pitch


• Duct Ventilation

4

When heat sink section of Servopack is stored on the panel exterior or in the duct, refer to Fig. 9.9.

Mounting of Duct Ventilation Type

Panel Punching size

Fig. 9.9 Mounting Servopack

9.3 WIRING

 $\mathcal{H}_{\mathcal{L}}^{\varepsilon}$

9.3.1 Rated Current and Cable Size

Tables 9.1 and **9.2** show external terminals, rated current, and cable sizes of the power unit and Servopack, respectively. Select the type and size of cables to meet ambient conditions and current capacity. The cable size is calculated so that a bundle of three cables can bear the rated current at an ambient temperature of 40°C. **Table 9.3** lists the type of cables.

Exto	rnal Terminal	Type CACR-		-	Rat	ted Currer	nt A (Effe	ctive Curr	ent)		en e					
LAIG	na remina	Symbol	SR02BE	SR03BE	SR05BE	SR07BE	SR10BE	SR15BE	SR20BE	SR30BE	SR44BE					
	Main Circuit Power Input	R,S,T	2	2	5	6	8	10	12	18	24					
On Line	Motor Connection	U,V,W	3.0	3.0	4.2	5.8	7.6	11.7	18.8	26.0	33.0					
	Control Power Input	r, t	0.5													
Off	Control I/O Signal Connector	1CN		100 mA DC max												
Line	PG Signal Connector	2CN		10	0 mA DC	max (50	OmA DC	for powe	er line onl	y)						
	Ground	1					·									

	Table	9.1	Rated	Current
--	-------	-----	-------	---------

Table 9.2 Recommended Cable Size of Servopack

Extor	nal Terminal	Type CACR-				Cal	ble Size r	nm²							
	nai renninai	Symbol	SR02BE	SR03BE	SR05BE	SR07BE	SR1 0BE	SR1 5BE	SR20BE	SR30BE	SR44BE				
	Main Circuit Power Input	R,S,T	HIV	1.25 or n	nore	HIV 2.0	or more	HIV 3.5	or more	HIV 5.5	HIV 5.5				
On Line	Motor Connection	U,V,W	HIV	1.25 or n	nore	HIV 2.0 or more	ніу	1.25 or r	nore	or more	or more				
	Control Power Input	r, f				HIV 1.25 or more									
Off	Control I/O Signal Connector	1CN	• Core	 Two-core twisted shielded cable Core must be 0.2 mm² or more Tin-plated soft-copper twisted cable 											
Off Line	PG Signal Connector	2CN		Finished cable dimension: 16 dia or less for 1CN. 11 dia or less for 2CN											
	Ground	<u> </u>	HIV 2.0 or more												

Notes: 1. For main circuits, use cables of 600 V or more.

2. Where cables are bundled or run through a duct (unplasticized polyvinyl chloride conduit or metalic conduit), select the larger cable size than listed considering the current drop rate of the cables.

3. Where the ambient (panel inside) temperature is high (40°C to 60°C), use heat-resistant cables.

9.3.2 Wiring Precautions

Servopack is a device for speed control of 3000:1, and signal level of several milli-volts or less. The following precautions should be taken for wiring.

(1) For signal lines and PG feedback lines, use twisted cables or multi-core shielded twisted-pair cables (Yaskawa Drawing No. DP9400064 or DE8400093).

Cable length is a maximum of 3 m for reference input lines and a maximum of 20 m for PG feedback lines. Use the shortest possible length.

(2) For ground line, cable should be as heavy as possible to provide class 3 ground (ground resistance 100 Ω or less). Make sure to ground at one point. If the motor and machine are insulated, ground the motor.

(3) To prevent malfunction due to noise, take the following precautions:

- Place the noise filter, Servopack and I/O reference as near as possible to each other.
- Make sure to insert a surge absorbing circuit into the relay, electromagnetic contact, and solenoid coils.
- Run the power line and signal line, holding the distance to 30 cm or more; do not run them in the same duct or in a bundle.
- When the same power is used for Servopack, as for an electric welder or electric welder or electrical discharge machine or when a high-frequency noise source is present in the vicinity, use filters in the power and input circuits.
- The Servopack uses a switching amplifier, and spurious noise may be present in the signal line. Never leave the termination of the analog input wiring open.

(4) Remedy for Radio Frequency Interference (R.F.I)

Servopack is not provided with protected from radio frequency interference. If the controller is adversely affected by radio waves, connect a noise filter to power supply.

(5) The signal line uses cables whose core is extremely fine (0.2 to 0.3 mm^2). Avoid using excessive force which may damage these cables.

9.3.3 Power Loss

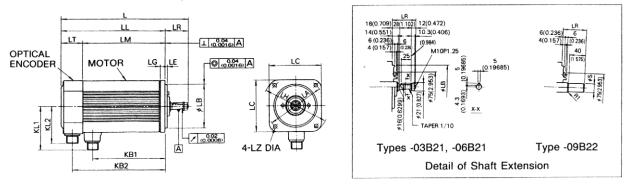
The power loss of Servopack is shown in Table 9.3.

Comionook	Output		Power Lo	ISS 🖉	-
Servopack Type CACR-	Current	Main Circuit W	Regenerative Resistance W	Control Circuit W	Total W
SR02BE	3.0	20			90
SR03BE	3.0	20	10		90
SR05BE	4.2	40			110
SR07BE	5.8	60			140
SR10BE	7.6	70	20	60	150
SR15BE	11.7	80			160
SR20BE	18.8	100	40		200
SR30BE	26.0	160	80		300
SR44BE	33.0	210	100		370

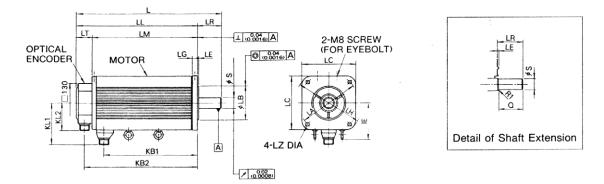
Table 9.3 Power Loss at Rated Output

Note: The regenerative risistor causes power loss when the motor is decelerated, but is negligible if the motor is not started and stopped frequently.

10. DIMENSIONS in mm (inches)


10.1 SERVOMOTOR

10.1.1 M Series


(1) Standard Type

13

• Types USAMED-03B21, -06B21 (Taper Shaft), -09B22(Straight Shaft)

• Types USAMED-12B22, -20B22, -30B22, -44B22 (Straight Shaft)

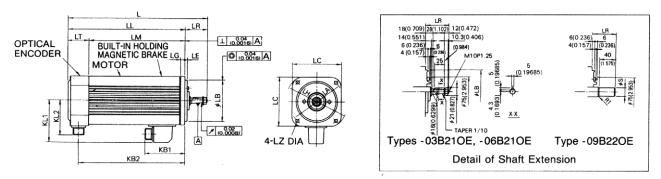
AC Servomotor.							1/DO			KL1 KL2		Fla	ange		Shaft Extension		Approx Weight			
Type USAMED-	L	LL	LM	LR	LT	KB1	KB2	IE	KLI			LB	LC	LE	LG	LH	LZ	S	Q	kg (lb)
03B21*	263 (10.34)	205 (8.06)	150 (5.9)	58 (2.28)	55 (2.16)	127 (5.0)	177 (6.97)		109 (4.29)	92 (3.62)	145 (5.71)	110 -0.035 (4.3307 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	-	-	8.5 (18.7)
06B21*	320 (12.59)	262 (10.31)	207 (8.15)	58 (2.28)	55 (2.16)	184 (7.24)	234 (9.21)	-	109 (4.29)	92 (3.62)	145 (5.71)	110 -0035 (4.3307 -00014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	_	-	13 (28.7)
09B22*	389 (15.31)	331 (13.03)	276 (10.87)	58 (2.28)	55 (2.16)	253 (9.96)	303 (11.93)	—	109 (4.29)	92 (3.62)	145 (5.71)	110 -0035 (4.3307 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	22 -0.013 (0.8661 -0.0005)	40 (1.575)	20 (44.1)
12B22*	343 (13.49)	264 (10.38)	211 (8.30)	79 (3.11)	53 (2.08)	171 (6.73)	237 (9.33)	_	139 (5.47)	92 (3.62)	200 (7.87)	114.3 -0.025 (4.5 -0.001)	180 (7.08)	3.2 (0.13)	18 (0.71)	230 (9.1)	13.5 (0.53)	35 ⁺⁰⁰¹ (1.3779 ⁺⁰⁰⁰⁰⁴)	76 (2.992)	22 (48.5)
20B22	401 (15.79)	322 (12.68)	269 (10.60)	79 (3.11)	53 (2.08)	229 (9.01)	295 (11.61)	123 (4.84)	139 (5.47)	92 (3.62)	200 (7.87)	114.3 -0025 (4.5 -0001)	180 (7.08)	3.2 (0.13)	18 (0.71)	230 (9.1)	13.5 (0.53)	35 ^{+0.00} (1.3779 ^{+0.0004})	76 (2.992)	29 (63.9)
30B22	486 (19.13)	407 (16.02)	354 (13.94)	79 (3.11)	53 (2.08)	314 (12.36)	380 (14.96)	123 (4.84)	139 (5.47)	92 (3.62)	200 (7.87)	114.3 -0.025 (4.5 -0.001)	180 (7.08)	3.2 (0.13)	18 (0.71)	230 (9.1)	13.5 (0.53)	35 +0.01 (1.3779 +0.0004)	76 (2.992)	41 (90.4)
44B22	687 (27.04)	577 (22.71)	524 (20.63)	110 (4.33)	53 (2.08)	476 (18.74)	550 (21.65)	124 (4.88)	149 (5.87)	92 (3.62)	200 (7.87)	114.3 -0.025 (4.5 -0.001)	180 (7.08)	3.2 (0.13)	18 (0.71)	230 (9.1)	13.5 (0.53)	42 -0016 (1.6535 -0.0006)	110 (4.33)	66 (145.5)

* Not Provided with an eyebolt.

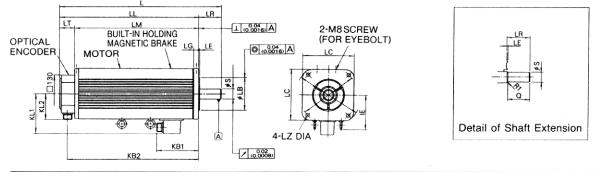
† TIR: Total Indicator Reading

Notes: 1. Optical encoder 8192 pulses/rev is used as a detector.

2. Vibration: $15 \mu m$ or below.


3. Plug and clamp are not attached for receptacle connection.

4. Connector specifications: Refer to Table 3.6.


5. It is recommended that the motor be mounted with its connector placed down.

(2) With Brake

• Types USAMED-03B21OE, -06B21OE (Taper Shaft), -09B22OE (Straight Shaft)

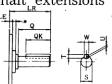
• Types USAMED -12B22OE, -20B22OE, -30B22OE (Straight Shaft)

AC Servomotor		11	ТМ	LR	IТ		KB2	IE	1/1 1	KL2			Fla	nge	Surfa	ice			Shaft Extension			Approx	BRAKE																																											
Type USAMED-		LL	LM	LN	LI	NDI	ND2	IC	KL1	RL2	LA	LA LB		A LB		LB		LB		A LB		_A LB		_A LB		.A LB		.A LB		.A LB		A LB		LB		A LB		_A LB		.A LB L		_A LB		_A LB		LA LB		_A LB		.A LB		.A LB		_A LB		LC	LE	LG	LH	LZ	S		Q	Weight kg (lb)	BRAKING TORQIE N•m (kgf•cm)	INERTIA (GD ²)/kg•m ²
03B210E	321 (12.64)	263 (10.36)	208 (8.2)	58 (2.28)	55 (2.16)	118 (4.65)	235 (9.25)	-	112 (4.41)	92 (3.62)	145 (5.71)	110 (4.3307	-0.035 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	_		-	11.5 (25.4)	0.00																																											
06B210E	366 (14.41)	308 (12.13)	253 (9.97)	58 (2.28)	55 (2.16)	105 (4.13)	280 (11.02)	-	112 (4.41)	92 (3.62)	145 (5.71)	110 (4.3307	-0.035 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	-		-	15 (33.1)	(0.6)	3.4 × 10-4																																										
09B220E	436 (17.17)	378 (14.89)	323 (12.73)	58 (2.28)	55 (2.16)	108 (4.25)	350 (13.78)	-	112 (4.41)	92 (3.62)	145 (5.71)	110 (4.3307	-0035 -00014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	22 - 22 (0.8661 - 2	0 0.013 0.0005)	40 (1.575)	23 (50.7)	(50.7) 6.53 (0.9)																																											
12B220E	421 (16.57)	342 (13.46)	289 (11.38)	79 (3.11)	53 (2.08)	148 (5.83)	315 (12.4)		142 (5.59)	92 (3.62)	200 (7.87)	114.3 (4.5	-0.025 -0.001)	180 (7.08)	3.2 (0.13)				35 (1.3779 *	0.01 0.0004)	76 (2.992)	30 (66.2)																																												
20B220E	486 (19.13)	407 (16.02)	354 (13.94)	79 (3.11)	53 (2.08)	148 (5.83)	380 (14.96)	123 (4.84)	142 (5.59)	92 (3.62)	200 (7.87)	114.3 (4.5	-0025 -0001)	180 (7.08)	3.2 (0.13)	18 (0.71)	230 (9.1)	13.5 (0.53)	35 +0 (1.3779 +0	0.01 0 0.0004)	76 (2.992)	37 (81.6)	35.28 (3.6)	2.5 × 10-₄																																										
30B220E	567 (22.32)	488 (19.21)	435 (17.13)	79 (3.11)	53 (2.08)	148 (5.83)	461 (18.15)	123 (4.84)	142 (5.59)	92 (3.62)	200 (7.87)	114.3	-0.025	180	3.2	18	230	13.5		0.01	76	40 (100)																																												

* Not provided with an eyebolt.

† TIR: Total Indicator Reading

- Notes: 1. Optical encoder 8192 pulses/rev is used as a detector. 2. Vibration: 15 μ m or below.
 - 3. Plug and clamp are not attached for receptacle connection.
- 4. Connector specifications: Refer to Table 3.7.


5. It is recommended that the motor be mounted with its connector placed down.

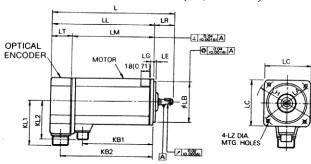
6. Power supply for brake is 90VDC.

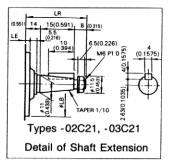
 Type USAMED-44B22OB is for 44kW. Contact your Yaskawa representative.

(3) Shaft Extension of Straight Shaft with Keyway

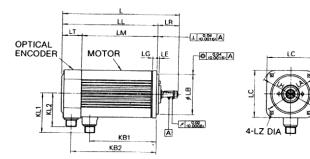
Both Servomotors with brake and without brake have the same dimensions except for shaft extension. Shaft extensions are shown below: L_{R}

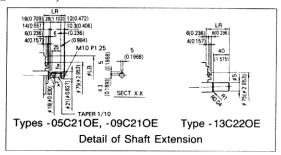
* 6 mm (0.236 in.) for USAMED-03B22 \square to 09B22 \square

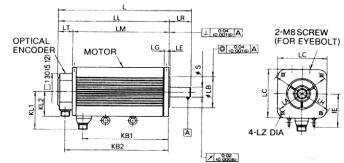

Motor	Туре			Dimensions of Shaft Extension								
Without Brake	With Brake	LR	LE	S		Q	QK	т	υ	w		
*USAMED-03B22K	*USAMED-03B22KE	58 (2.28)	6 (0.24)	19 (0.7480	-0.0005)	40 (1.57)	25 (0.98)	5 (0.1968)	3	5 (0.1968)		
*USAMED-06B22K	*USAMED-06B22KE	58 (2.28)	6 (0.24)	19 (0.7480	-0013 -00005)	40 (1.57)	25 (0.98)	5 (0.1968)	3 (0.1181)	5 (0.1968)		
*USAMED-09B22K	*USAMED-09B22KE	58 (2.28)	6 (0.24)	22 (0.8661	-0.013 -0.0005)	40 (1.57)	25 (0.98)	6 (0.2362)	3.5 (0.1378)	6 (0.2362)		
USAMED-12B22K	USAMED-12B22KE	79 (3.11)	3.2 (0.13)	35 (1.3379	+0.01 *0.0004)	76 (2.99)	60 (2.36)	8 (2.2835)	5 (0.1968)	10		
USAMED-20B22K	USAMED-20B22KE	79 (3.11)	3.2 (0.13)	35 (1.3379	*001 *00004)	76 (2.99)	60 (2.36)	8 (2.2835)	5 (0.1968)	10		
USAMED-30B22K	USAMED-30B22KE	79 (3.11)	3.2 (0.13)	35 (1.3379	· 0.01 • 0.0004)	76 (2.99)	60 (2.36)	8 (2.2835)	5 (0.1968)	10 (0.3937)		
USAMED-44B22K	USAMED-44B22KB	110 (4.33)	3.2 (0.13)	42 (1.6535	-0016 -00006)	110 (4.33)	90 (3.54)	8 (2.2835)	5 (0.1968)	12 (0.3937)		

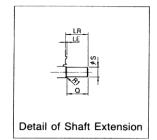

10.1.2 F Series

 \dot{m}


(1) Standard Type


• Types USAFED-02C21, -03C21 (Taper Shaft)

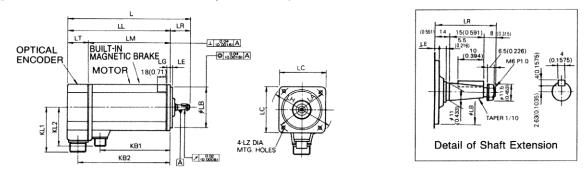



• Types USAFED-05C21, -09C21 (Taper Shaft), -13C22 (Straight Shaft)

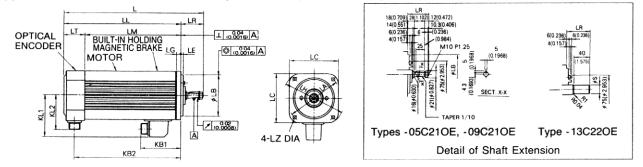
• Types USAFED-20C22, -30C22, -44C22 (Straight Shaft)

AC Servomotor	1	LL	LM	LR	LT	KB1	KB2	IE	KL1	KL2		Fla	ange	Surfa	ace			Shaft Exter	nsion	Approx
Type USAFED-	-						IND2	1	NL I	NL2	LA	LB	LC	LE	LG	LH	LZ	S	Q	Weight kg (lb)
02C21*	190 (7.48)	153 (6.02)	113 (4.45)	37 (1.46)	40 (1.57)	90 (3.54)	132 (5.19)		76 (3.43)	89 (2.99)	100 (3.94)	80 -0.030 (3.1496 -0.0012)	90 (3.54)	4 (0.157)	7 (0.276)	120 (4.72)	6.6 (0.26)		-	3.5 (7.7)
03C21*	236 (9.29)	199 (7.83)	159 (6.26)	37 (1.46)	40 (1.57)	136 (5.35)	178 (7.0)	-	76 (3.43)	89 (2.99)	100 (3.94)	80 -0 030 (3.1496 -0.0012)	90 (3.54)	4 (0.157)	7 (0.276)	120 (4.72)	6.6 (0.26)	-	-	4.0 (8.8)
05C21*	263 (10.35)	205 (8.07)	150 (5.91)	58 (2.28)	55 (2.16)	127 (5.0)	177 (6.97)	_	109 (4.29)	92 (3.62)	145 (5.71)	110 -0.035 (4.3307 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	_		8.5 (18.7)
09C21*	320 (12.6)	262 (10.32)	207 (8.16)	58 (2.28)	55 (2.16)	184 (7.24)	234 (9.21)		109 (4.29)	92 (3.62)	145 (5.71)	110 -0.035 (4.3307 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)			13 (28.7)
13C22*	389 (15.31)	331 (13.03)	276 (10.87)	58 (2.28)	55 (2.16)	253 (9.96)	303 (11.93)		109 (4.29)	92 (3.62)	145 (5.71)	110 -0.0035 (4.3307 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	220.013 (0.8661 -0.0005)	40 (1.57)	20 (44.1)
20C22*	343 (13.5)	264 (10.39)	211 (8.3)	79 (3.11)	53 (2.09)	171 (6.73)	237 (9.33)	-	139 (5.47)	92 (3.62)	200 (7.88)	114.3 -0.025 (4.5 -0.001)	180 (7.09)	3.2 (0.13)	18 (0.71)	230 (9.06)	13.5	35 +0.01	76 (2.99)	22 (48.5)
30C22	401 (15.79)	322 (12.68)	269 (10.59)	79 (3.11)	53 (2.09)	229 (9.02)	295 (11.61)	123 (4.85)	139 (5.47)	92 (3.62)	200 (7.88)	114.3 -0.025 (4.5 -0.001)	180 (7.09)	3.2 (0.13)	18 (0.71)	230 (9.06)	13.5 (0.53)	35 ^{+0.01} (1.3379 ^{+0.0004})	76 (2.99)	29 (63.9)
44C22	486 (19.14)	407 (16.02)	354 (13.93)	79 (3.11)	53 (2.09)	314 (12.36)	380 (14.96)	123 (4.85)	139 (5.47)	92 (3.62)	200 (7.88)	114.3 -0.025 4.5 -0.001)	180 (7.09)	3.2 (0.13)	18 (0.71)	230 (9.06)	13.5 (0.53)	35 +0.01	76 (2.99)	41 (90.4)

* Not Provided with an eyebolt.


Notes: 1. Optical encoder 8192 pulses/rev is used as a detector. 2. Vibration: $15 \ \mu m$ or below. 4. Connector specifications: Refer to Table 3.7.

5. It is recommended that the motor be mounted with its connector placed down.


 Plug and clamp are not attached for receptacle connection. 6. Power suppily for brake is 90VDC.

(2) With Brake

• Types USAFED-02C210E, -03C210E (Taper Shaft)

• Types USAFED-05C210E, -09C210E (Taper Shaft), -13C220E (Straight Shaft)

• Types USAFED-20C22OE, -30C22OE, -44C22OE (Straight Shaft)

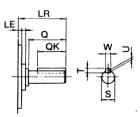
AC Servomotor						KD4	KDO		1/1.4			Fla	inge	Surfa	ce			Shaft Exter	nsion	Approx	BRA	
Type USAFED-		LL	LM	LR	LT	KB1	KB2	IE	KL1	KL2	LA	LB	LC	LE	LG	LH	LZ	S	Q	Weight kg (lb)	BRAKING TOROIE N•m (kgf•cm)	INERTIA (GD²)/kg•m²
02C21OE	236 (9.29)	199 (7.83)	159 (6.26)	37 (1.46)	40 (1.57)	24 (0.95)	178 (7.0)		76 (3.43)	89 (2.99)	100 (3.94)	80 -0000 (3.1496 -00012)	90 (3.54)	4 (0.157)	7 (0.276)	120 (4.72)	6.6 (0.26)	-	-	4.4 (9.7)	0.98 (0.1)	0.3 × 10-+
03C21OE	286 (11.26)	249 (9.8)	209 (8.23)	37 (1.46)	40 (1.57)	24 (0.95)	228 (8.98)		76 (3.43)	89 (2.99)	100 (3.94)	80 -0000 (3.1496 -00012)	90 (3.54)	4 (0.157)	7 (0.276)	120 (4.72)	6.6 (0.26)			5.0 (11)	1.47 (0.15)	0.3 × 10-4
05C21OE	321 (12.64)	263 (10.36)	208 (8.20)	58 (2.28)	55 (2.16)	118 (4.65)	235 (9.25)	-	112 (4.41)	92 (3.62)	145 (5.71)	110 -0035 (4.3307 -00014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)			11.5 (25.4)	5.88	
09C21OE	366 (14.41)	308 (12.13)	253 (9.97)	58 (2.28)	55 (2.16)	105 (4.13)	280 (11.02)		112 (4.41)	92 (3.62)	145 (5.71)	110 -0035 (4.3307 -00014)	130 (5.12)		12 (0.47)	165 (6.5)	9 (0.35)	-	-	15 (33.1)	(0.6)	3.4 × 10-4
13C22OE	436 (17.17)	378 (14.89)	323 (12.73)	58 (2.28)	55 (2.16)	108 (4.25)	350 (13.78)		112 (4.41)	92 (3.62)	145 (5.71)	110 -0000 (4.3307 -00014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	22 -0013 (0.8661 -00005)	40 (1.57)	23 (50.7)	6.53 (0.9)	
20C22OE	421 (16.57)	342 (13.46)	289 (11.38)	79 (3.11)	53 (2.09)	148 (5.83)	315 (12.4)	-	142 (5.59)	92 (3.62)	200 (7.88)	114.3 -0.025 (4.5 -0.001)	180 (7.09)	3.2 (0.13)	18 (0.71)	230 (9.6)	13.5 (0.53)		76 (2.99)	30 (66.2)		
30C22OE	486 (19.13)	407 (16.02)	354 (13.94)	79 (3.11)	53 (2.09)	148 (5.83)	380 (14.96)	123 (4.85)	142 (5.59)	92 (3.62)	200 (7.88)	114.3 -0025	180	3.2 (0.13)	18	230	13.5	35 *001	76 (2.99)	37 (81.6)	35.28 (3.6)	2.5 × 10-4
44C22OE	567 (22.32)	488 (19.21)	435 (17.13)	79 (3.11)	53 (2.09)	148 (5.83)	461 (18.15)	123 (4.85)	142 (5.59)	92 (3.62)		114.3 -0025 (4.5 -0001)	180 (7.09)	3.2 (0.13)	18 (0.71)	230 (9.6)	13.5 (0.53)	35 ^{+0.01} (1.3379 ^{+0.000+} 0	76 (2.99)	49 (108.1)		

* Not provided with an eyebolt.

† TIR: Total Indicator Reading

4. Connector specifications: Refer to Table 3.7.

 It is recommended that the motor be mounted with its connector placed down.


Notes: 1. Optical encoder 8192 pulses/rev is used as a detector. 2. Vibration: 15μ m or below.

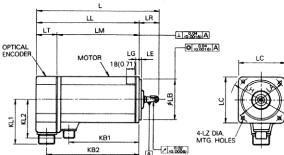
Plug and clamp are not attached for receptacle connection.

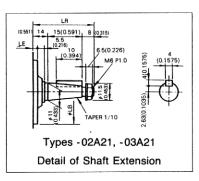
6. Power supply for brake is 90VDC.

(3) Shaft Extension of Straight Shaft with Keyway

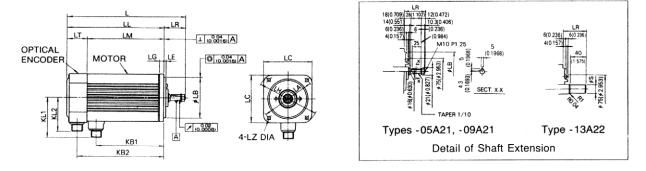
Both Servomotors with brake and without brake have the same dimensions except for shaft extension. Shaft extensions are shown below:

Motor	Туре			Di	mensi	ons o	f Sha	ft Ext	ensio	n
Without Brake	With Brake	LR	LE		S	Q	QK	Т	U	w
*USAFED-02C22K	*USAFED-02C22KE	37 (1.46)	4 (0.157)	14 (0.5512	-0.011 -0.0004)	25 (0.98)	15 (0.59)	5 (0.1968)	3 (0.1181)	5 (0.1968)
*USAFED-03C22K	*USAFED-03C22KE	37 (1.46)	4 (0.157)	14 (0.5512	-0.0011 -0.0004)	25 (0.98)	15 (0.59)	5 (0.1968)	3 (0.1181)	5 (0.1968)
*USAFED-05C22K	*USAFED-05C22KE	58 (2.28)	6 (0.24)	19 (0.7480	-0.013 -0.0005)	40 (1.57)	25 (0.98)	5 (0.1968)	3 (0.1181)	5 (0.1968)
*USAFED-09C22K	*USAFED-09C22KE	58 (2.28)	6 (0.24)	19 (0.7480	-0.013 -0.0005)	40 (1.57)	25 (0.98)	5 (0.1968)	3 (0.1181)	5 (0.1968)
*USAFED-13C22K	*USAFED-13C22KE	58 (2.28)	6 (0.24)	22 (0.8661	-0.013 -0.0005)	40 (1.57)	25 (0.98)	6 (0.2362)	3.5 (0.1378)	6 (0.2362)
USAFED-20C22K	USAFED-20C22KE	79 (3.11)	3.2 (0.13)	35 (1.3379	+0.01 0 +0.0004 0	76 (2.99)	60 (2.36)	8 (2.2835)	5 (0.1968)	10 (0.3937)
USAFED-30C22K	USAFED-30C22KE	79 (3.11)	3.2 (0.13)	35 (1.3379	+0.01 0 +0.0004 0	76 (2.99)	60 (2.36)	8 (2.2835)	5 (0.1968)	10 (0.3937)
USAFED-44C22K	USAFED-44C22KB	79 (3.11)	3.2 (0.13)	35 (1.3379	+0.01 +0.0004 0	76 (2.99)	60 (2.36)	8 (2.2835)	5 (0.1968)	10 (0.3937)

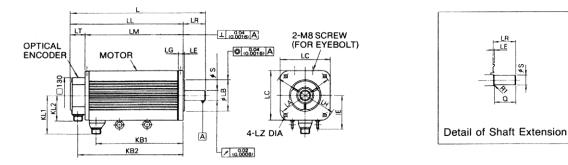

4 mm (in.) for USAFED-02C22[] and 03C22[]
 6 mm (in.) for USAFED-05C22[] to 13C22[]


35

10.1.3 G Series


(1) Standard Type

• Types USAGED-02A21, -03A21 (Taper Shaft)



• Types USAGED-05A21, -09A21 (Taper Shaft), -13A22 (Straight Shaft)

• Types USAGED-20A22, -30A22, -44A22 (Straight Shaft)

AC Servomotor							KDO	15		KI O		Fla	ange	Surfa	ice			Shaft Exter	nsion	Approx
Type USAGED-	L	LL	LM	LR	LI	KB1	KB2	IE	KL1	KL2	LA	LB	LC	LE	LG	LH	LΖ	S	Q	Weight kg (lb)
02A21*	190 (7.48)	153 (6.02)	113 (4.45)	37 (1.46)	40 (1.57)	90 (3.54)	132 (5.19)	_	76 (3.43)	89 (2.99)	100 (3.94)	80 -0030 (3.1496 -00012)	90 (3.54)	4 (0.157)	7 (0.276)	120 (4.72)	6.6 (0.26)	-	-	3.5/(7.7)
03A21*	236 (9.29)	199 (7.83)	159 (6.26)	37 (1.46)	40 (1.57)	136 (5.35)	178 (7.0)	-	76 (3.43)	89 (2.99)	100 (3.94)	80 -0030 (3.1496 -00012)	90 (3.54)	4 (0.157)	7 (0.276)	120 (4.72)	6.6 (0.26)		-	4.0/(8.8)
05A21*	263 (10.35)	205 (8.07)	150 (5.91)	58 (2.28)	55 (2.16)	127 (5.0)	177 (6.97)		109 (4.29)	92 (3.62)	145 (5.71)	110 -0.035 (4.3307 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	_	-	8.5/(18.7)
09A21*	320 (12.6)	262 (10.32)	207 (8.16)	58 (2.28)	55 (2.16)	184 (7.24)	234 (9.21)	-	109 (4.29)	92 (3.62)	145 (5.71)	110 -0.035 (4.3307 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	-	-	13/(28.7)
13A22*	389 (15.31)	331 (13.03)	276 (10.87)	58 (2.28)	55 (2.16)	253 (9.96)	303 (11.93)	-	109 (4.29)	92 (3.62)	145 (5.71)	110 -0.0035 (4.3307 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	22 -0.013 (0.8661 -0.0005)	40 (1.57)	20/(44.1)
20A22*	343 (13.5)	264 (10.39)	211 (8.3)	79 (3.11)	53 (2.09)	171 (6.73)	237 (9.33)	-	139 (5.47)	92 (3.62)	200 (7.88)	114.3 -0.025 (4.5 -0.001)	180 (7.09)	3.2 (0.13)	18 (0.71)	230 (9.06)	13.5 (0.53)	35 +001 (1.3379 +00004)	76 (2.99)	22/(48.5)
30A22	401 (15.79)	322 (12.68)	269 (10.59)	79 (3.11)	53 (2.09)	229 (9.02)	295 (11.61)	123 (4.85)	139 (5.47)	92 (3.62)	200 (7.88)	114.3 -0.025 (4.5 -0.001)	180 (7.09)	3.2 (0.13)	18 (0.71)	230 (9.06)	13.5 (0.53)	35 +001 (1.3379 +00004)	76 (2.99)	29/(63.9)
44A22	486 (19.14)	407 (16.02)	354 (13.93)	79 (3.11)	53 (2.09)	314 (12.36)	380 (14.96)	123 (4.85)	139 (5.47)	92 (3.62)	200 (7.88)	114.3 -0.025 (4.5 -0.001)	180 (7.09)	3.2 (0.13)	18 (0.71)	230 (9.06)	13.5 (0.53)	35 +001 (1.3379 +00004)	76 (2.99)	41/(90.4)

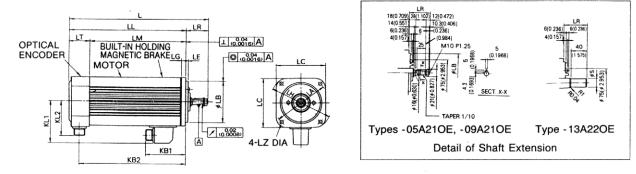
* Not provided with an eyebolt.

† TIR: Toral Indicator Reading

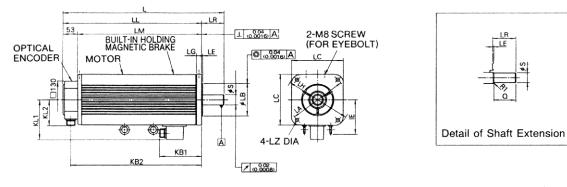
Notes: 1. Optical encoder 8192 pulses/rev is used as a detector. 2. Vibration: 15 μ m or below. Plug and clamp are not attached for receptacle connection.
 Connector specifications: Refer to Table 3.8.

5. It is recommended that the motor be mounted with its connector placed down.

- 90 -


(2) With Brake

्द


• Types USAGED-02A21OE, -03A21OE (Taper Shaft)

LR 14 15(0.591) 8 (0.315) LR ... LM 1 (0.0016) A OPTICAL ENCODER BUILT-IN MAGNETIC BRAKELG 0 (0.0016) A LE MOTOR 18(0.71 KL2 E Detail of Shaft Extension 4-LZ DIA. MTG. HOLES KB KB2 A

• Types USAGED-05A21OE, -09A21OE (Taper Shaft), -13A22OE (Straight Shaft)

• Types USAGED-20A22OE, -30A22OE, -44A22OE (Straight Shaft)

AC Servomotor	,			LR	LT	VD1	кв2	IE	VI.1	KL2		Fla	nge	Surfa	ce			Shaft Exter	nsion	Approx Weight		AKE .
Type USAGED-	L	LL	LM	LH	L1	NDI	IND2	10	INL I	NL2	LA	LB	LC	LE	LG	LH	LZ	S	Q	kg (lb)	BRAKING TORQIE N-m (kgf-cm)	INERTIA (GD²)/kg•m²
02A21OE	236 (9.29)	199 (7.83)	159 (6.26)	37 (1.46)	40 (1.57)	24 (0.95)	178 (7.0)	-	76 (3.43)	89 (2.99)	100 (3.94)	80 -0.000 (3.1496 -0.0012)	90 (3.54)	4 (0.157)	7 (0.276)	120 (4.72)	6.6 (0.26)		-	4.4 (9.7)	0.98 (0.1)	0.3 × 10-4
03A21OE	286 (11.26)	249 (9.8)	209 (8.23)	37 (1.46)	40 (1.57)	24 (0.95)	228 (8.98)	-	76 (3.43)	89 (2.99)	100 (3.94)	80 -0.000 (3.1496 -0.001z)	90 (3.54)	4 (0.157)	7 (0.276)	120 (4.72)	6.6 (0.26)	-	-	5.0 (11)	1.47 (0.15)	0.3 × 10-4
05A21OE	321 (12.64)	263 (10.36)	208 (8.20)	58 (2.28)	55 (2.16)	118 (4.65)	235 (9.25)	-	112 (4.41)	92 (3.62)	145 (5.71)	110 -0005 (4.3307 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)		-	-	11.5 (25.4)	0.00	
09A21OE	366 (14.41)	308 (12.13)	253 (9.97)	58 (2.28)	55 (2.16)	105 (4.13)	280 (11.02)	-	112 (4.41)	92 (3.62)	145 (5.71)	110 -0.005 (4.3307 -0.0014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	-		15 (33.1)	(0.6)	3.4 × 10-4
13A22OE		378 (14.89)		58 (2.28)	55 (2.16)	108 (4.25)	350 (13.78)	-	112 (4.41)	92 (3.62)	145 (5.71)		130	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	22 -0013 (0.8661 -0.0005)	40 (1.57)	23 (50.7)	6.53 (0.9)	
20A22OE	421 (16.57)	342 (13.46)	289 (11.38)	79 (3.11)	53 (2.09)	148 (5.83)	315 (12.4)	-	142 (5.59)	92 (3.62)		114.3 -0.025 (4,5 -0.001)	180 (7.09)	3.2 (0.13)	18 (0.71)	230 (9.06)	13.5 (0.53)		76 (2.99)	30 (66.2)		
30A22OE	486 (19.13)	407 (16.02)	354 (13.94)	79 (3.11)	53 (2.09)	148 (5.83)	380 (14.96)	123 (4.85)	142 (5.59)	92 (3.62)		114.3 8	180	32	18	230	13.5		76 (2.99)	37 (81.6)	35.28 (3.6)	2.5 × 10-4
44A22OE	567 (22.32)	488 (19.21)	435 (17.13)	79 (3.11)	53 (2.09)	148 (5.83)	461 (18.15)	123 (4.85)	142 (5.59)	92 (3.62)	200 (7.88)	114.3	180	3.2	18	230	13.5		76	10 (100 1)		

* Not provided with an eyebolt.

† TIR: Total Indicator Reading

Notes: 1. Optical encoder 8192 pulses/rev is used as a detector.

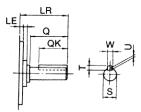
4. Connector specifications: Refer to Table 3.8.

5. It is recommended that the motor be mounted with its con-

5.5(0.226)

P1.0

63(0 /10

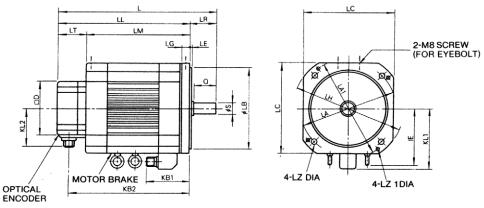

- nector placed down.
- 2. Vibration: $15 \ \mu m$ or below. 3. Plug and clamp are not attached for receptacle con nection.

6. Power supply for brake is 90VDC.

-91-

(3) Shaft Extension of Straight Shaft with Keyway

Both Servomotors with brake and without brake have the same dimensions except for shaft extension. Shaft extensions are shown below:


Motor	Туре			Di	imensi	ons c	f Sha	ft Ext	ensio	n
Without Brake	With Brake	LR	LE		S	Q	QK	Т	U	w
*USAGED-02A22K	*USAGED-02A22KE	37 (1.46)	4 (0.157)	14 (0.5512	-0011 -00004)	25 (0.98)	15 (0.59)	5 (0.1968)	3 (0.1181)	5 (0.1968)
*USAGED-03A22K	*USAGED-03A22KE	37 (1.46)	4 (0.157)	14 (0.5512	-0.011 -0.0004)	25 (0.98)	15 (0.59)	5 (0.1968)	3 (0.1181)	5 (0.1968)
*USAGED-05A22K	*USAGED-05A22KE	58 (2.28)	6 (0.24)	19 (0.7480	-0.013 0 -0.0005)	40 (1.57)	25 (0.98)	5 (0.1968)	3 (0.1181)	5 (0.1968)
*USAGED-09A22K	*USAGED-09A22KE	58 (2.28)	6 (0.24)	19 (0.7480	-0013 -00005)	40 (1.57)	25 (0.98)	5 (0.1968)	3 (0.1181)	5 (0.1968)
*USAGED-13A22K	*USAGED-13A22KE	58 (2.28)	6 (0.24)	22 (0.8661	-0.013 -0.0005)	40 (1.57)	25 (0.98)	6 (0.2362)	3.5 (0.1378)	6 (0.2362)
USAGED-20A22K	USAGED-20A22KE	79 (3.11)	3.2 (0.13)	35 (1.3379	+0.01 0 +0.0004 0 0	76 (2.99)	60 (2.36)	8 (2.2835)	5 (0.1968)	10 (0.3937)
USAGED-30A22K	USAGED-30A22KE	79 (3.11)	3.2 (0.13)	35 (1.3379	+0.01 0 +0.0004 0	76 (2.99)	60 (2.36)	8 (2.2835)	5 (0.1968)	10 (0.3937)
USAGED-44A22K	USAGED-44A22KB	7 9 (3.11)	3.2 (0.13)	35 (1.3379	+0.01 +0.0004 0)	76 (2.99)	60 (2.36)	8 (2.2835)	5 (0.1968)	10 (0.3937)

*: 4 mm (in.) for USAGED-02A22[] and 03A22[] 6 mm (in.) for USAGED-05A22[] to 13A22[]

10.1.4 D Series

(1) Standard Type

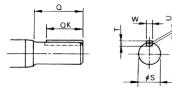
• Types USADED-05E32OE to -37E32OE

AC Servomotor						KDA			1/1 4	110	D			Fla	inge	Surf	ace				Shaft Exte	nsion	Approx Weight +
Type USADED-	L	LL	LM	LR	LT	KBI	KB2	IE	KL I	KL2	D	LA	LA1	LB	LC	LE	LG	LH	LZ	LZ1	S	Q	kg (lb)
05E32OE	237 (9.33)	182 (7.17)	138 (5.44)	55 (2.16)	44 (1.73)	90 (3.54)	158 (6.22)	-	138 (5.43)	93 (3.66)	130 (5.12)	200 (7.87)	-	114.3 -0.025 (4.5 -0.001)	180 (7.09)	3.2 (0.126)	12 (0.472)	230 (9.06)	13.5 (0.53)		22 -0013 (0.8661 -00005)	50 (1.97)	17 (16)/ 37.5 (35.3)
10E32OE	257 (10.12)	202 (7.96)	158 (6.23)	55 (2.16)	44 (1.73)	90 (3.54)	178 (7.0)	-	138 (5.43)	93 (3.66)	130 (5.12)	200 (7.87)	-	114.3 -0.025 (4.5 -0.001)	180 (7.09)	3.2 (0.126)	12 (0.472)	230 (9.06)	13.5 (0.53)	-	22 -0013 (0.8661 -00005)	50 (1.97)	19 (18)/ 41.9 (39.7)
15E32OE	270 (10.63)	217 (8.47)	171 (6.66)	55 (2.16)	46 (1.81)	95 (3.74)	191 (7.52)	142 (5.59)	160 (6.3)	93 (3.66)	130 (5.12	235 (9.25)	250 (9.84)	200 -0.046 (7.874 -0.0018)	220 (8.66)	4 (0.157)	16 (0.63)	.270 (10.63)	13.5 (0.53)	M8	28 -0.013 (1.1024 -0.0005)	50 (1.97)	30 (27)/ 66.2 (59.5)
22E32OE	285 (11.22)	232 (9.06)	186 (7.25)	55 (2.16)	46 (1.81)	95 (3.74)	206 (8.11)	142 (5.59)	160 (6.3)	93 (3.66)	130 (5.12)	235 (9.25)	250 (9.84)	200 _0 046 (7.874 _0 0018)	220 (8.66)	4 (0.157)	16 (0.63)	270 (10.63)	13.5 (0.53)	M8	28 -0013 (1.1024 -00005)	50 (1.97)	32 (29)/ 70.6 (63.9)
37E32OE	345 (13.58)	282 (11.02)	236 (9.21)	65 (2.56)	46 (1.81)	95 (3.74)	256 (10.08)	142 (5.59)	160 (6.3)	93 (3.66)	130 (5.12)	235 (9.25)	250 (9.84)	200 -0.046 (7.874 -0.0018)	220 (8.66)	4 (0.157)	16 (0.63)	270 (10.63)	13.5 (0.53)	M8	32 -0006 (1.2598 -0006)	60 (2.36)	39 (36)/ 86 (79.4)

* Not provided with an eyebolt. +: () shows without brake.

† TIR: Total Indicator Reading

18


Notes: 1. Optical encoder 2048 pulses/rev is used as a detector. 2. Plug and clamp are not attached for receptacle connection.

3. It is recommended that the motor be mounted with its connector placed down.

4. Both Servomotors with brake and without brake have the same dimension.

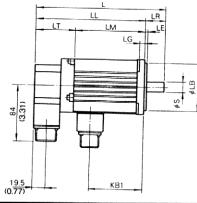
Mechanical Specifications in mm

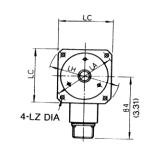
(2) Shaft Extension of Straight with Keyway

Accuracy (T.I.R.)†		Reference Diagram
Flange surface perpendicular to shaft (A)	0.04 (0.06)*	
Flange diameter concentric to shaft B	0.04	
Shaft run out (C)	0.02	U-@/

Note: Dimensions of the shaft extension key and keyway are based on JIS (Japanese Industrial Standard) B 1301 "Sunk Keys and Their Corresponding Keyways (Normal keys)." Shaft extension key is furnished.

* Accuracy for motor types USADED -15E3, -22E3, and -37E3. † T.I.R. (Total Indicator Reading)


AC Servomotor		Shaf	t Exter	ision		
Type USADED-	S	Q	QK	Т	U	w
05E32K	22 -0.021	50	45	6	3.5	6
	(0.8661 -0.0008)	(1.97)	(1.77)	(0.236)	(0.138)	(0.2362)
10E32K	22 -0.021	50	45	6	3.5	6
	(0.8661 -0.0008)	(1.97)	(1.77)	(0.236)	(0.138)	(0.2362)
15E32K	28 -0.013	50	45	7	4	8
	(1.1024 -0.0005)	(1.97)	(1.77)	(0.275)	(0.157)	(0.3149)
22E32K	28 -0.013	50	45	7	4	8
	(1.1024 -0.0005)	(1.97)	(1.77)	(0.275)	(0.157)	(0.3149)
37E32K	32 -0.016	60	50	8	5	10
	(1.2598 -0.0006)	(2.36)	(1.97)	(0.315)	(0.197)	(0.3937)

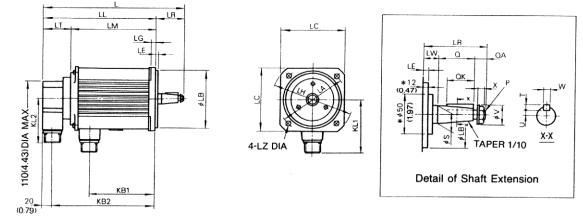

Accuracy (T.I.R.)†

10.1.5 S Series

(1) Standard Type

• Types USASEM-02A32, -03A32, -05A32 (Straight Shaft)

AC Servomotor		LL	LM	IT	LR	KB1		Flan	ge Sur	face ar	nd Sha	ft Exte	nsion		Approx
Type USASEM-	-				L11	NDT	LA	LB	LC	LE	LG	LH	LZ	S	Weight kg (lb)
02A32	164.5 (6.48)	134.5 (5.3)	95.5 (3.76)	39.5 (1.54)	30 (1,18)	76.5 (3.61)	80 (3.15)	50 -0.025 (1.9685 -0.01)	65 (2.559)	3 (0.118)	6 (0.24)	89 (3.50)	5 (0197)		1.4 (3.1)
03A32	178.5 (7.03)	148.5 (5.85)	109 (4.29)	39.5 (1.56)	30 (1.18)	78 (3.07)	90 (3.54)	$70 = \frac{0}{0} \frac{0}{0}$	80 (3.15)	3 (0.118)	8 (0.31)	105 (4.13)	6 (0.236)	14 -00011 (0.5512 -0000a)	2.6 (5.7)
05A32	200.5 (7.89)	170.5 (6.71)	131 (5.16)	39.5 (1.55)	30 (1.18)	100 (3.94)	90 (3.54)	70 -0.030 (2.7559 -0.0012)	80 (3.15)	3 (0.118)	8 (0.31)	105 (4.13)	6	$14 - \frac{0}{00011}$ (0.5512 - $\frac{0}{00004}$)	3.3 (7.3)


Notes: 1. The draw-out construction of Type USASEM-02A32 is of the waterproof gland type. Therefore, the figure and dimensions of the connector section slightly differ from the above. For details contact your YASKAWA representative.

2. Optical encoder 2048 pulses/rev is used as a detector.

3. Vibration: $15 \,\mu m$ or below.

4. Plug and clamp are not attached for receptacle connection.5. It is recommended that the motor be mounted with its connector placed down.

• Types USASEM-08A31, -15A31, -30A31 (Taper Shaft)

AC Servomotor	1	11	LM	IT	IB	KB1	KB2	KI 1	K12		FI	ang	e Sı	urfac	e						S	haft	Ext	ensi	on			Approx
Type USASEM-	-						ND2			LA	LB	LC	LE	LG	LH	LZ	LW	Q	QK	QA	X	S	۷	Ρ	U	W	T	Weight kg (lb)
08A31	257 (10.12)			50.5 (1.99)		115 (4.53)	188 (7.4)	102 (4.02)	86 (3.39)	130 (5.12)	110 -00035 (4.3307 -00014)	120 (4.72)	3 (0.12)	10 (0.4)	155 (6.1)	9 (0.35)	18 (0.71)	28 (1.1)	25 (0.98)		10.3	16 (0.63)	21 (0.83)	M10 P1.25	4.3 -001 (0.169 -0004)	5 (0.1968)	5 (0.1968)	6 (10 0)
15A31	317.5 (12.5)	259.5 (10.22)					239.5 (9.43)		87 (3.43)	145 (5.71)	110 -0036 (4.3307 -00014)	130 (5.12)	6 (0.24)	12 (0.47)	165 (6.5)	9 (0.35)	18 (0.71)	28 (1.1)	25	12	10.3		21	M10	5.8 -01 (0.228 -000)	5	5	11 (24.3)
30A31	366 (14.41)		240 (9.45)	56 (2.2)	70 - (2.76)		276 (10.87)	135 (5.32)	87 (3.43)	200 (7.87)	114.3 -0040 (4.5 -00016)	180 (7.09)	6 (0.24)	18 (0.71)	230 (9.1)	13.5 (0.53)	20 (0.79)	36 (1.42)	32 (1.26)	14 (0.55)	12.5 (0.49)	22 (0.87)	24	M12		· /	1	24 (52.9)

Note: 1. Optical encoder 2048 pulses/rev is used as a detector. 2. Vibration: 15μ m or below.

3. Plug and clamp are not attached for receptacle connection. It is recommended that the motor be mounted with its connector placed down.
 Dimensions of the shaft extension key and keyway are based

4. Use hexagon socket head cap screw as flange-mounted bolt.

on JIS (Japaneese Industrial Standard) B 1301 "Sunk Keys and Their Corresponding Keyways (Normal keys)" Shaft extension key is furnished.

(2) With Brake

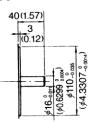
• Types USASEM-02A32OB, -03A32OB, -05A32OB

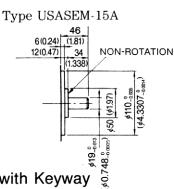
					BRAKE		Approx
Motor Type	L	LL	LM	INERTIA *kg•m²	BRAKING TORQIE N•m (kgf•cm)	Voltage V	Weight kg (lb)
USASEM-02A32OB	228 (8.98)	198 (7.8)	137 (5.39)	0.0163 × 10 ⁻⁴	0.98 (10)	DC90	2.2 (4.9)
USASEM-03A32OB	241 (9.49)	211 (8.31)	150 (5.91)	0.0163 × 10 ⁻⁴	0.98 (10)	DC90	3.5 (7.7)
USASEM-05A32OB	263 (10.35)	233 (9.17)	172 (6.77)	0.0163 × 10 ⁻⁴	1.764 (18)	DC90	4.1 (9.1)

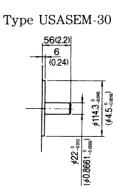
• Types USASEM-08A310B, -15A310B, -30A310B

				BRAKE			Approx
Motor Type	L	LL	LM	INERTIA kg•m ²	BRAKING TORQIE N•m (kgf•cm)	Voltage V	Weight kg (lb)
USASEM-08A31OB	305 (12.0)	247 (9.72)	146 (5.75)	0.5365 × 10 ⁻⁴	2.94 (30)	DC90	7 (15.4)
USASEM-15A31OB	377.5 (14.86)	319.5 (12.58)	197.5 (7.78)	0.6717 × 10 ^{.4}	5.88 (60)	DC90	12.5 (27.6)
USASEM-30A31OB	432 (17.0)	362 (14.24)	240 (9.45)	0.6717 × 10 ^{.4}	11.76 (120)	DC90	25.5 (56.2)

Mechanical Specifications in mm

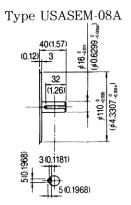

Accuracy (T.I.R.)†	Reference Diagram	
Flange surface perpendicular to shaft (A)	0.04	1 [m]
Flange diameter concentric to shaft (B)	0.04	-{ <mark> −</mark> ¶_©]
Shaft run out C	0.02	

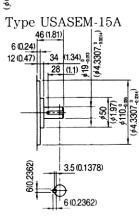

† T.I.R. (Total Indicator Reading)

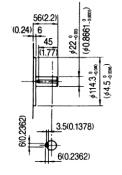

(3) Shaft Extension of Straight

Type USASEM-08A

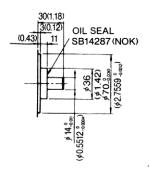
-3





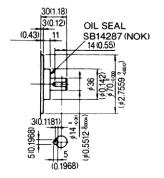

(4) Shaft Extension of Straight with Keyway

Types USASEM-03A, 30(1.18) (0.12) 3 (0.12) 3 (0.12) 3 (0.12) 3 (0.12) 3 (0.12) (0


Type USASEM-30A

- 95 -

(5) Shaft Extension of Straight with Oil Seal

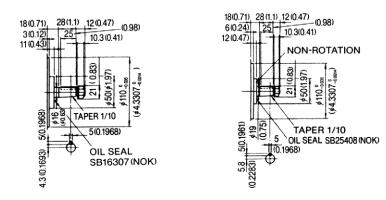

Types USASEM-03A, -05A

Note: Proper dimensions comply with standard dimensions.

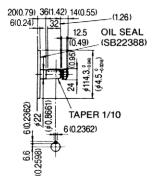
(6) Shaft Extension of Straight with Key and Oil Seal

Types USASEM-03, -05A

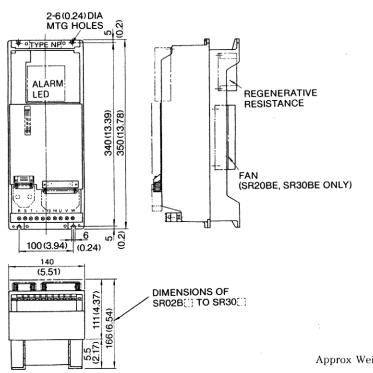
Note: Proper dimensions comply with standard dimensions.

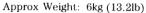

(7) Shaft Extension of Taper with Oil Seal

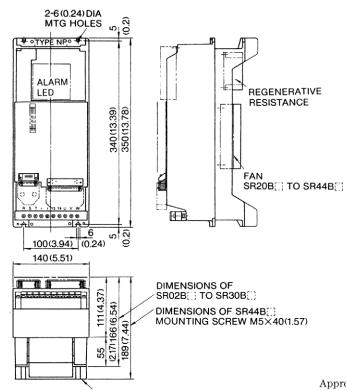
Type USASEM-08A


2

Type USASEM-15A


Note: Proper dimensions comply with standard dimensions.

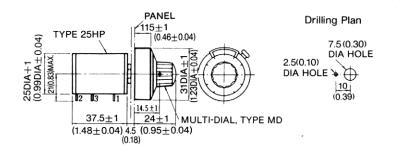



10.2 Servopack

 2Ω

Types CACR-SR02BE to SR30BE

SPACER (SR44B ... ONLY)

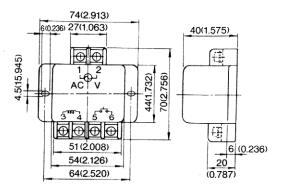

Approx Weight: 7kg (15.4lb)

5

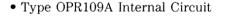
Type CACR-SR44BE

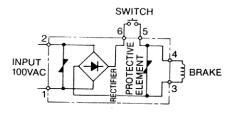
10.3 PERIPHERAL EQUIPMENT in mm (inches)

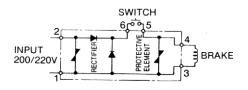
(1) Variable Resistor for Speed Setting Type 25HP-10B



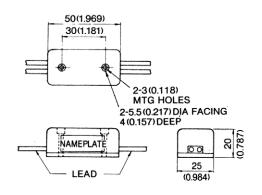
(2) Power Supply for Brake


According to the motor, select 100V/200V power supply for brake. (Made by Kokura Clutch Co., Ltd.)


Power Supply for Brake (for M,F,G,D,S Series)


- Input 100VAC, Output 90VDC (Type OPR109F) 1.0ADC Max.
- Input 200VAC, Output 90VDC (Type OPR109A) 1.0ADC Max.

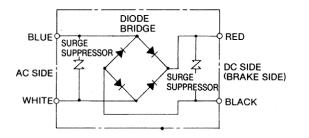
• Type OPR109F Internal Circuit



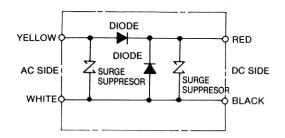
Notes:

- 1. Do not short-circuit between ouput terminal Nos. 3 and 4.
- The open/close value of the contact used for Nos. 5 and 6 is 5 to 10 times the rated current of the brake used. Direct current open/close contacts must be used.
- 3. Insert a fuse in the input or output side to protect the power unit.

- Power Supply for Brake (for S Series)
 - Input 100VAC Output 90VDC 1.0ADC Max. (DP8401002-2)
 - Input 200VAC Output 90VDC 1.0ADC Max. (DP8401002-1)



- Leadlength: each 500 mm (19.69 inches.)
- Lead Color:


AC Inp	Brake	
100V	200V	Side
Blue White	Yellow White	Red Black

• Max Ambient Temp: 60°C.

• AC 100V Internal Circuit

• AC 200V Internal Circuit

Note:

38

Open/close of brake power supply circuit is possible at AC and DC sides. Normally safety operation is more available at AC side. If the circuit is opened/closed at DC side, provide surge suppressor near brake coil otherwise the brake coil might be destroyed.

11. TEST RUN

Before test run, check the follwing. Correct any deficiency.

11.1 CHECK ITEMS BEFORE TEST RUN

11.1.1 Servomotor

Before test run, check the following. If the test run is performed after long storage, see par.11 Inspection and Maintenance.

- Connection to machines or devices, wiring, fuse connection, and grounding are correct.
- Bolts and nuts are not loose.
- For motors with oil seals, the seals are not damaged and oil is properly lubricated.

11.1.2 Servopack

- Setting switches are correctly set to satisfy the specifications for the applicable servomotor and optical encoer.
- Connection and wiring leads are firmly connected to terminals or inserted into the connectors.
- The power supply is turned off if servo alarm outputs.
- Voltage supplied to Servopack is 200 to $230V_{-15}^{+10}$ %.
- The speed reference should be 0V (speed reference circuit is short-circuited.)

11.2 TEST RUN PROCEDURES

11.2.1 Preparation of Operation

During test run, loads should not be applied to the servomotor. If it is necessary to start with the driven machine conneted to the motor, confirm that the driven system has been ready for emergency stop at any time.

(1) Power ON

After checking items in par. 11.1, turn on the power supply. When the power on sequence is correct, according to par 6.1, the power is turned on by depressing the POWER pushbutton for approximately 1 second.

- (2) When the power is correctly supplied, the following five figures LED s light: (LED indicates the motor is stopped)
- (3) When a Servo ON signal is input (contact is on), the power circuit in the Servopack operats and the motor is ready to run. (LED indicates the motor is stopped.)

11.2.2 Operation

The operation is possible only while Servo ON signal is on.

- (1) Increase the speed reference voltage gradually from 0V, then the motor will rotate at a speed proportional to the reference voltage.
- (2) When the reference voltage is positive, the motor rotates forward (counterclockwise viewed from drive end-output shaft) (Fig. 9.1)

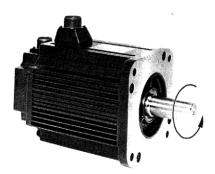


Fig. 11.1 Motor Forward Running

11.2.3 Inspection during Test Run

The follwing items should be checked during the test run.

- Unusual vibration
- Abnormal noise

-35

• Excessive temperature rise

If any abnormality is found, take corrective actions according to par. 14. At a test operation, the load and machine may not fit well at first and result in overload.

12. ADJUSTMENT

12.1 CHARACTERISTICS AT THE TIME OF DELIVERY

The Servopack has been factory-adjusted as follows:

(1) Speed reference input-servomotor speed ratio (no load) (Fig. 12.1)

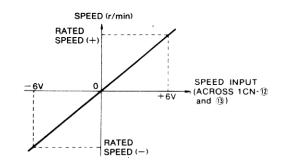


Fig. 12.1 Speed Reference Input-Servomotor Speed Ratio

(2) Speed Variation (Fig. 12.2) Speed variation $\triangle N, \triangle n$ $\downarrow NR$ $\downarrow MR$ $\downarrow MR$

(3) Start-stop characteristics (Fig. 12.3)

Ip: Start current set value in Table 12.1. The overshoot ($\triangle Nov$) and undershoot ($\triangle NuD$) when $J_L = J_M$, are as shown in Table 12.1 (adjustment level preset at the factory).

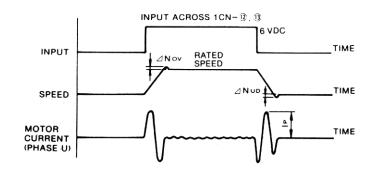


Fig. 12.3 Start-Stop Characteristics

Type CACR-	Nov/NR × 100	$N_{UD}/N_{R} \times 100$
SR02BE		
SR03BE		
SR05BE		
SR07BE		
SR10BE	5 % max	5 % max
SR15BE		
SR20BE		
SR30BE		*
SR44BE		

Table 12.1 Overshoot and Undershoot at Step Response

12.2 READJUSTMENT

SQ

The Servopack has been adjusted at the factory to obtain optimum characteristics, and readjustment is normally unnecessary. If adjustment is required depending on the use, readjust the Servopack referring to Par.8 'MONITOR PANEL OPERATION''. (Do not tamper with potentiometers.)

13. INSPECTION AND MAINTENANCE

13.1 AC SERVOMOTOR

The AC servomotor has no wearing parts (eg. brushes), so simple daily inspection is sufficient. The inspection schedule for the motor is shown in **Table 13.1**.

Do not disassemble the motor. If disassembly should become necessary, contact your Yaskawa representative.

Inspection Item	Frequency	Inspection Operation
Vibration	Daily	Feel manually.
Noise	Daily	Aurally
Exterior and Cleaning	As required	Clean with dry cloth or compressed air.
Insulation Resistance	Yearly	Make sure that it is more than $10M\Omega$ by measuring with a 500V megger after disconnecting the motor from the controller.
Oil Seal	Every 5000 hours	If worn or damaged, replace after disconnecting the motor from the driven machine.
Total Inspection	Every 20,000 hours	Contact Yaskawa representative.

Table 13.1 Inspection Schedule for Motors

13.2 Servopack

The Servopack is of contactless construction so that no special maintenance is required. Remove dust and tighten screws periodically.

14. TROUBLESHOOTING GUIDE

14.1 SERVOMOTOR

38

WARINING

Remedies in should be practiced

after turning off the power.

Trouble	Cause	What to do		
	Loose connection	Tighten connection.		
Motor does not start.	Wrong wiring	Correct.		
	Overload	Reduce load or use a larger motor.		
Unstable operation	Wrong wiring	Inspect and correct wiring across motor terminals U, V, and W, and PG.		
	Excessive ambient temperature.	Reduce below 40 °C.		
Motor overheats.	Motor dirty	Clean motor surface.		
	Overload	Reduce load or use a larger motor.		
	Motor loosely mounted	Tighten foundation bolts.		
	Motor misaligned	Realign.		
Unusual noise	Coupling out of balance	Balance coupling.		
	Noisy bearing	Check alignment, loading of bearing, lubrication and contact Yaskawa representative.		
	Vibration of driven machine	Contact the machine manufacturer.		

Table 14.1 Troubleshooting Guide for AC Servomotor

14.2 Servopack

Í

É

14.2.1 LED Indication (7-segment) for Troubleshooting

LED Detection	Lighting Condition	Probable Cause	Corrective Action		
8. 10	Goes on when power is supplied to the control circuit	Defective control circuit board (1 PWB).	Repalce the Servopack.		
Overcurrent	Goes on when power is supplied to the main circuit and servo power is turned on. • MCCB does not trip.	 Defective current feedback circuit. Defective main circuit transistor module. 	Replace the Servopack.		
	Goes on when power is supplied to the main circuit.	Detective main circuit transistor module.	Replace the Servopack.		
	Goes on during operation.	 Fan has stopped. 	 Check the fan. (SR20, 30, 44) 		
	• When power to the control circuit is turned off and then turned on again. When reset later, the operation starts.	Temperature around the Servopack exceeds 55°C.	Decrease the temperature below 55°C (The heat sink may be over- heated.)		
8.11	Goes on when power is supplied to the main circuit.	 The motor ground 	 Replace the motor. 		
Ground fault	MCCB trips.	 Defective main circuit transistor module. 	Replace the Servopack.		
R. 20	Goes on when power is supplied to the control circuit.	 Defective control circuit board (1PWB).(MCCB is ON status.) 	Replace the Servopack.		
Circuit protector	Goes on when power is supplied to the main circuit.	 Defective main circuit thyristor diode module. 	Replace the Servopack.		
tripped		MCCB trips.	Replace the Servopack.		
R. 30	Goes on when power is supplied to the control circuit.				
Pagaparativa	Goes on approximate 0.5 to 1 second	• Defective regenerative transistor.	Replace the Servopack.		
Regenerative trouble	after power is supplied to the main circuit.	 Regenerative resistor disconnection. 	Check and replace the regenerative resistor. (Replace the Servopack.)		
R. HC Over-voltage	Goes on when the motor starts or slows down.	• Load inertia $J_{\iota}(GD^2)$ too large.	 Check the inertia of the machine with the value converted to the motor shaft. 		
ever venage		• Defective regenerative circuit.	Replace the Servopack.		
8.51	When the reference is input, the	Motor connection error.	 Correct the motor connection. 		
Over-speed	motor runs fast and continues running.	Optical encoder connection error.	 Check and correct pulses in phases A,B,C,U,V,W with 2CN. 		
R. 52 Overspeed reference detection	When the reference is input, the motor runs fast and continues running.	 The reference input voltage too large. 	Decrease the reference input voltage.		
R. 50 Voltage drop	Goes on when power is supplied to the main circuit.	Defective main circuit thyristor- diode module.	Replace the Servopack.		
<i>R.</i> 7	Goes on whe power is supplied to the control circuit.	Defective control circuit board (1 PWB).	Replace the Servopack.		
Overload	The motor rotates, but the torque is un- available. When power to the control circuit is turned off and then turned on again, the operation starts, but the tor- que is still uavailable.	 Motor circuit error connection, such as U→V, V→W, W→U or single- phase connection. 	Correct the connection.		
8.71	 Goes on during operation. When power to the control circuit is turned off and then turned on again, the operation starts. 	 Operation with more of the rated tor- que for a number of seconds. 	 Check and correct the load (may be overload). 		

Table 14.2 LED Indication for Troubleshooting

LED Detection	Lighting Condition	Probable Cause	Corrective Action		
2ר .8	 Goes on during operation. When power to the control circuit is turned off and then turned on again, the operation starts. 	 Operation with more of the rated torque for a number of seconds. 	Check and correct the load (may be overload).		
R. とロ A/D error	Goes on when power is supplied to the control circuit.	 Defective control circuit board (1PWB). 	Replace the Servopack.		
	Goes on during operation.	Erroneous operation of reference input reader.	Resume after reset operation.		
R. 51	des on during operation.	 Defective external current limit reader. 	Replace the Servopack.		
		 Erroneous operation of reference input reader. 	Resume after reset operation.		
R. 62	Goes on during operation.	 Defective external current limit reader. 	Replace the Servopack.		
R. C	Goes on when power is supplied to the control circuit.	 Defective control circuit board (1 PWB). 	Replace the Servopack.		
	Case on when the motor starts and re-	Motor wiring error.	 Correct the motor connection. 		
R. [] Overrun detection	Goes on when the motor starts and ro- tates for a moment.	Optical encoder wiring error, discon- nection.	Correct the optical encoder connection.		
R. C.2 Phase detection error	Goes on when the motor starts and ro- tates for a moment.	 Optical encoder wiring error, disconnection (PU,PV,PW) 	Correct the optical encoder connection.		
R. C. 3 Phase PA,PB disconnection	Goes on when the motor starts and ro- tates for a moment.	Phase A and B of optical encoder disconnection (PA, PB)	Correct the optical encoder signal line.		
R. LY Phase PC disconection	Goes on when the motor starts and ro- tates for a moment.	Phase C of optical encoder discon- nection (PC).	Correct the optical encoder signal line.		
R . F	Goes on when power is supplied to the control circuit.	 Defective control circuit board (1 PWB). 	Replace the Servopack.		
R. F. I	Goes on when power is supplied to the main circuit.	Open phase of power supply.	Check the main circuit power supply		
R. F2	Goes on when power is supplied to the main circuit.	Large distortion of power supply.	Check the main circuit power supply		
	Goes on when power is supplied to the control circuit.	 Defective control circuit board (1 PWB). 	Replace the Servopack.		
CPU error		• Faulty internal elements.	Resume after reset operation.		
	Goes on during operation.	Defective internal elements.	 Replace the Servopack. 		
R. CZ Parameter breakdown	Goes on when power is supplied to the control circuit.	Defective control circuit board. (1PWB, 2PWB)	Replace the Servopack.		
R. 03	Goes on when power is supplied to the control circuit.	Defective control circuit board (1PWB, 2PWB)	Replace the Servopack.		
Defective main		Faulty internal elements.	 Resume after reset operation. 		
circuit section	Goes on during operation.	 Defective internal elements. 	 Replace the Servopack. 		
R. 04	Goes on during parameter charge.	• Set value without setting range.	Reset the parameter.		

Table 14.2 LED Indication for Troubleshooting (Cont'd)

٠

2. : unspecified.

163

14.2.2 Examples of Troubleshooting for Defective Wiring or Parts

Trouble	Check Items	What to do
MCCB trips immediately af- ter Power On and Servo On.	 Main circuit wiring (such as the ground of motor) 	Correct the wiring.
The reference is input, but the motor does not run.	 Voltage across (B), (S), and (T). Trouble LED off Speed reference voltage P-CON, N-OT, P-OT, S- ON signals LED r u n on 	 Check the AC power supply circuit. If LEDs are on, check the cause. Adjust the reference volume.

 Table 12.3
 Example of Troubleshooting for Defective Wiring or Parts

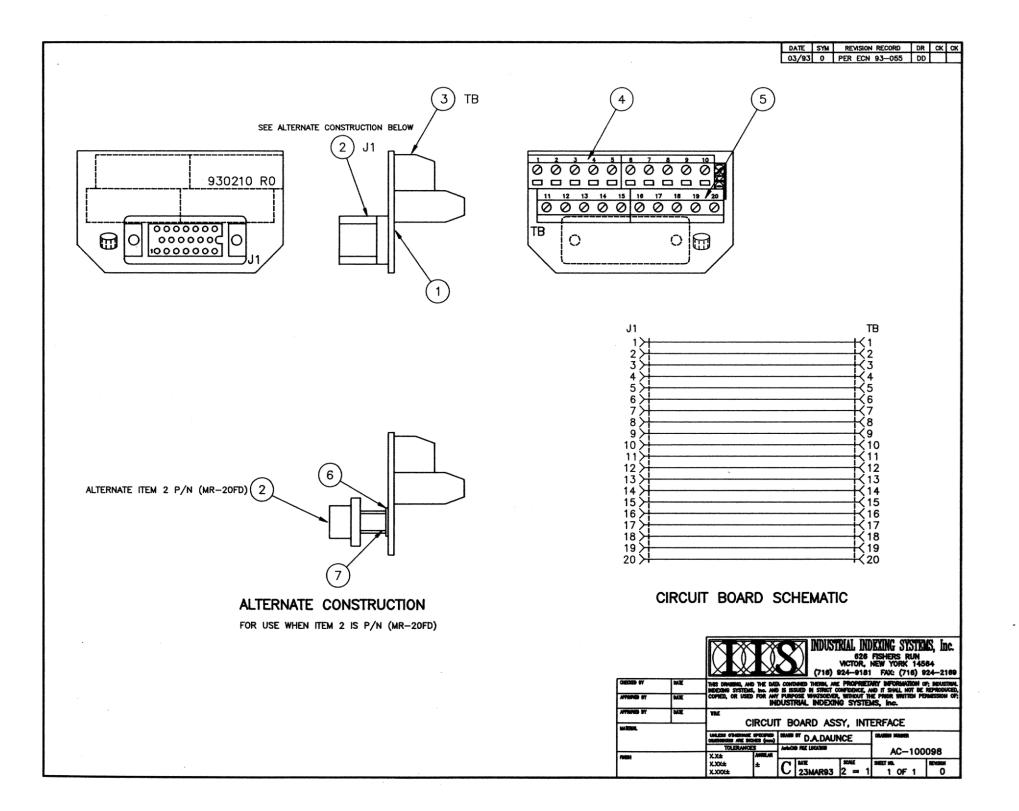
14.2.3 Examples of Troubleshooting for Incomplete Adjustment

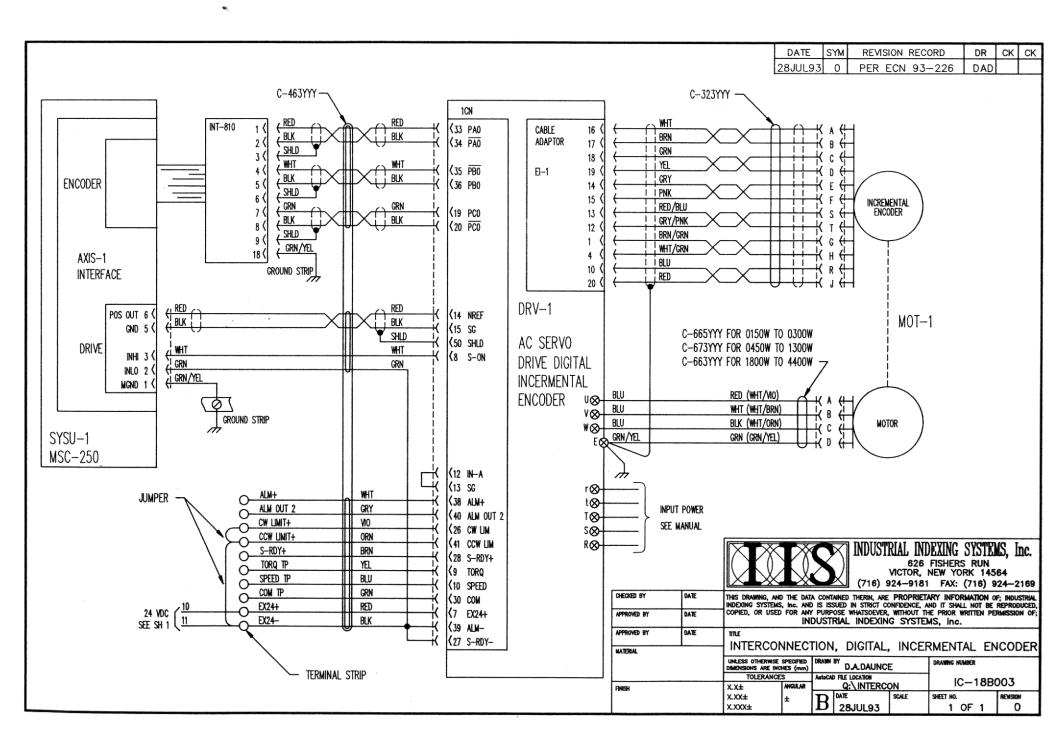
Trouble	Cause	What to do
Motor vibrates or vibration frequency is too high, approx 200 to 300 Hz. (When vibration frequency equals commercial fre- quency.)	 Speed loop gain too high Excessively long lead of Servopack input circuit. Noise interference due to bundling signal line and power line. 	 Set Cn-04 [LOOPHZ] to decrease the speed loop gain. Separate input circuit line from power line or connect input circuit to low impedance less than several 100 ohms.
Motor speed overshoot is too large at starting or stopping.	 Speed loop gain too high 	Set Cn-04 [LOOPHZ] to decrease the speed loop gain.
Motor rotates even if the speed reference voltage is 0V.	 Offset in speed reference voltage. 	• Adjust the speed reference offset. (Refer to Par.8.4.4.)

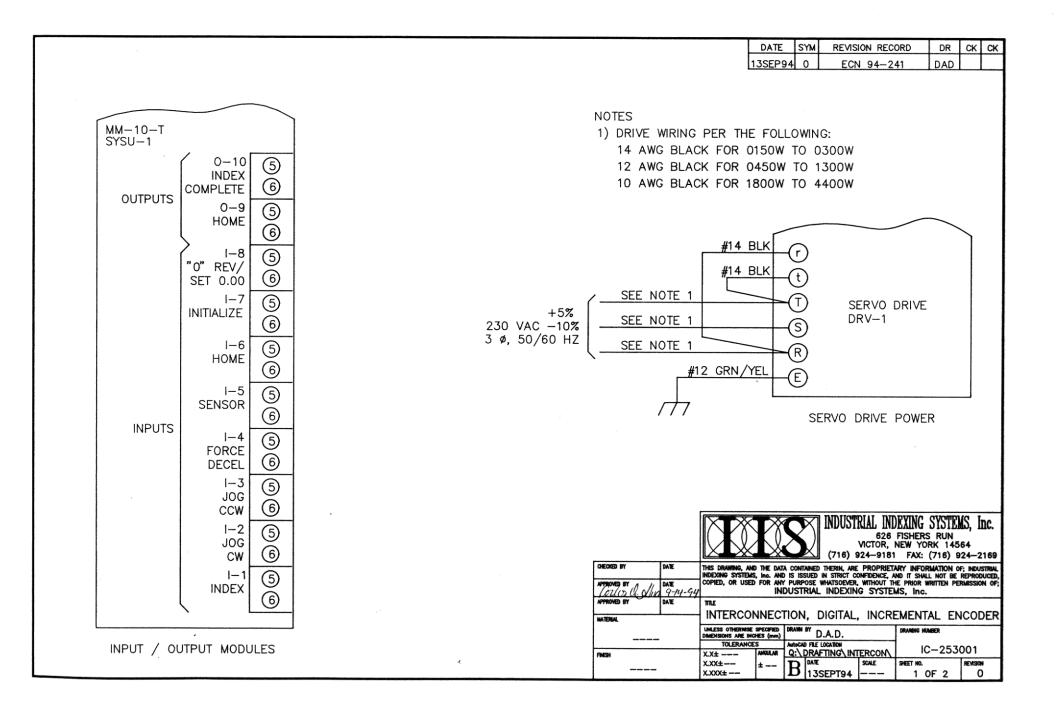
Table 12.4 Examples of Troubleshooting for Incomplete Adjustment

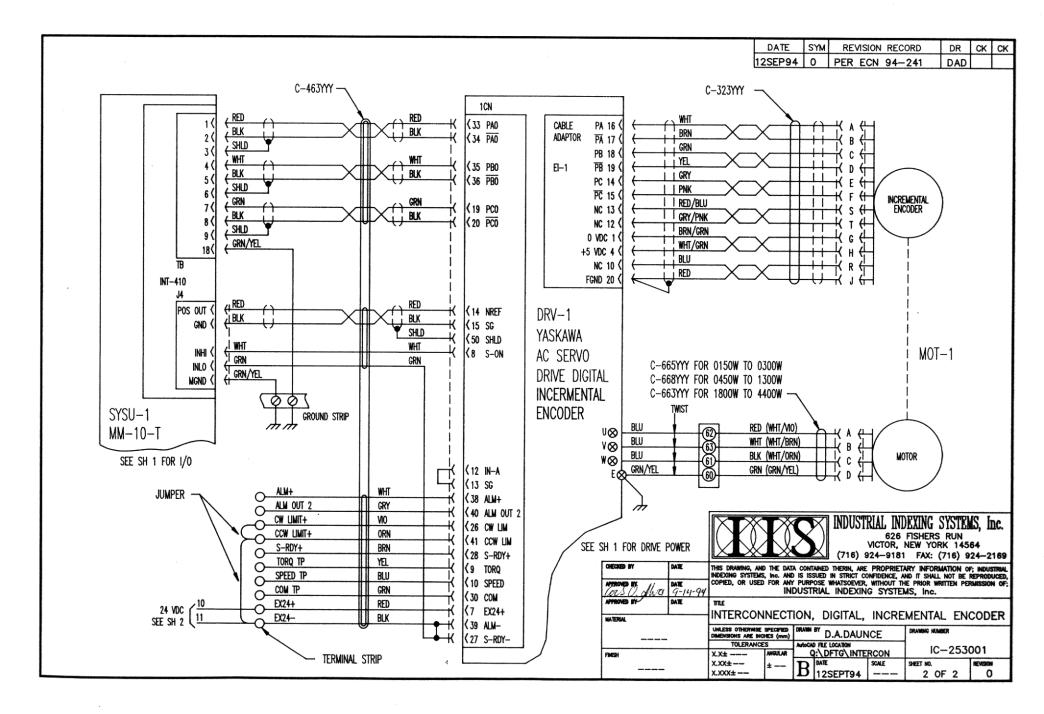
МЕМО

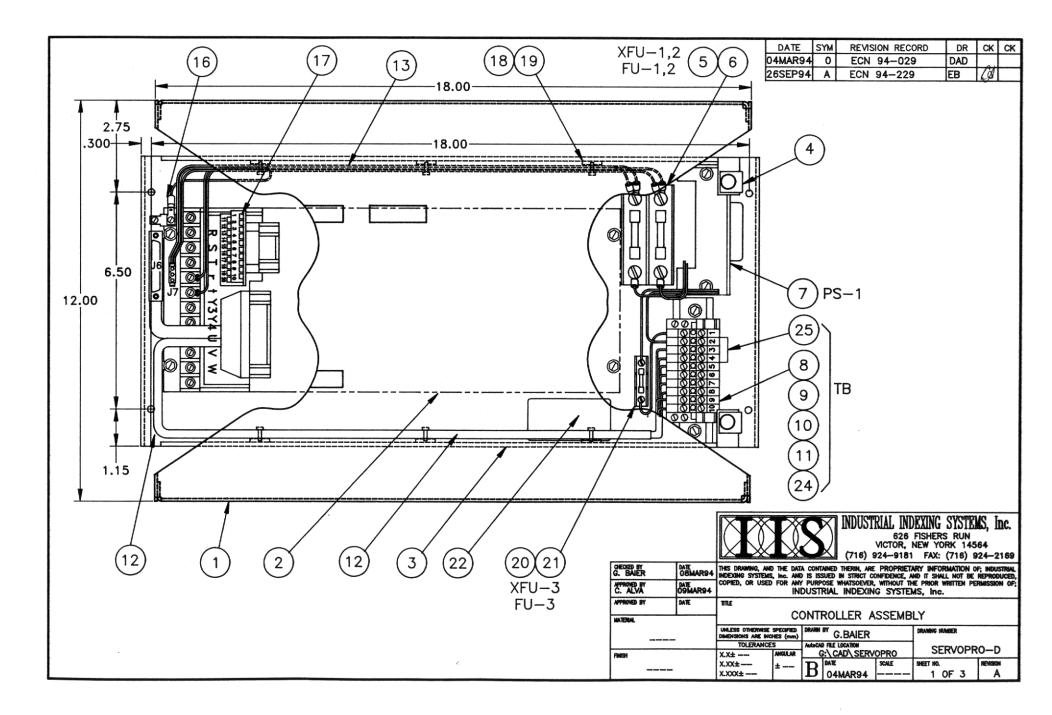
APPENDIX A ELECTRICAL CONNECTIONS

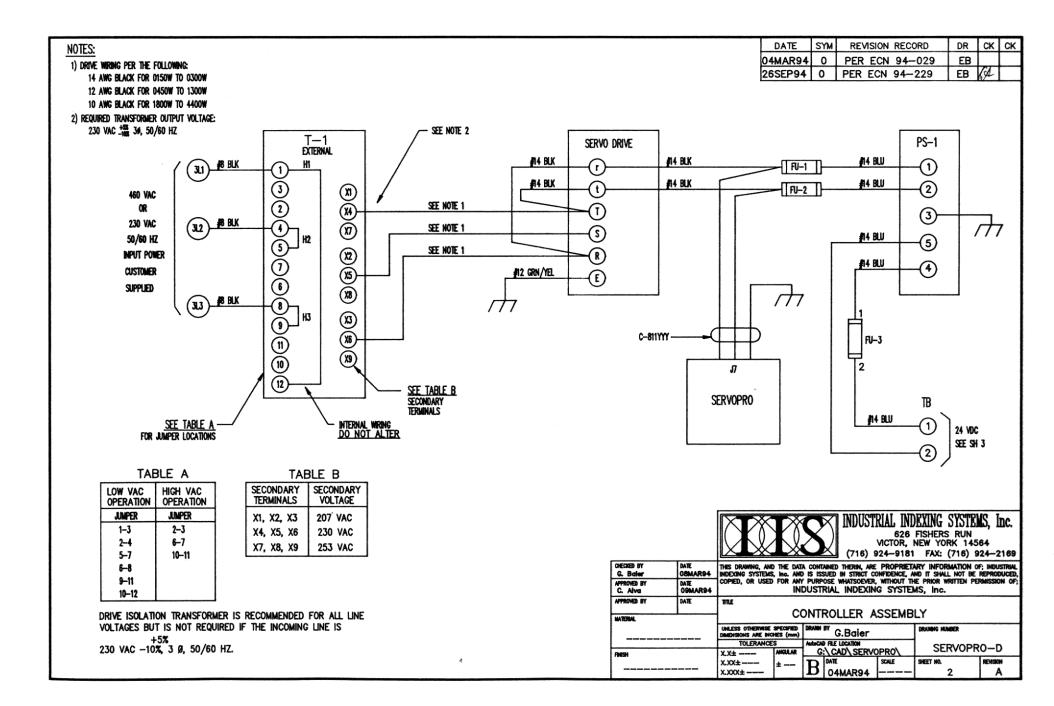

DRAWING NUMBER

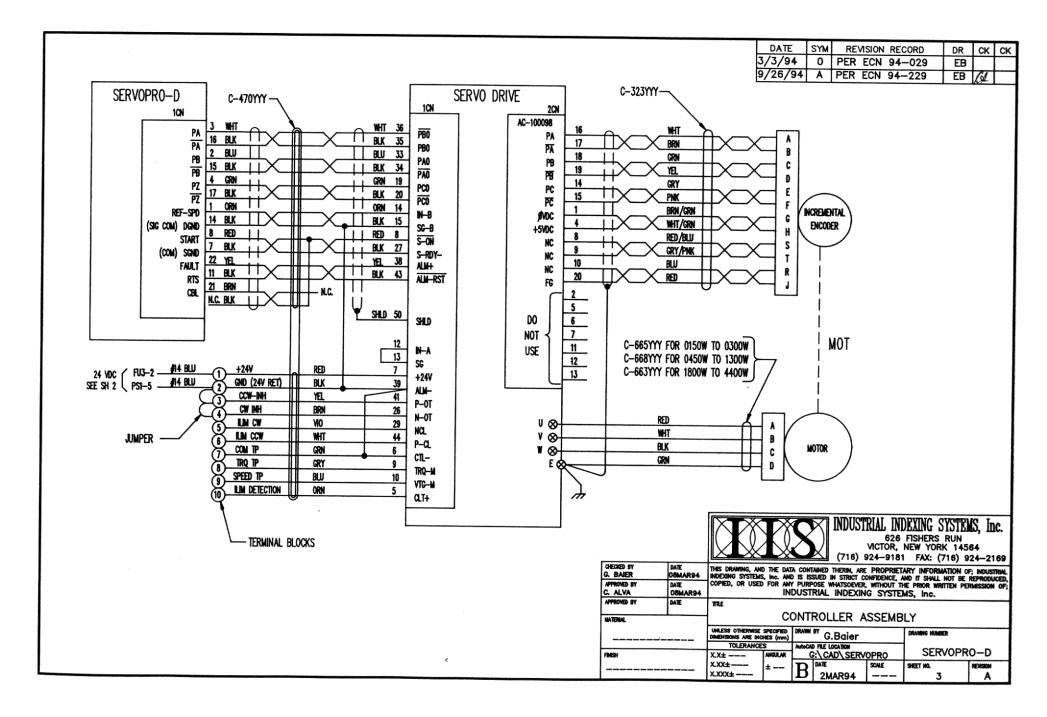

AC-100098 IC-18B003 IC-253001 SERVOPRO-D


DESCRIPTION


Circuit Board Assembly, Interface Interconnect, Digital Incremental Encoder Interconnect, Digital Incremental Encoder Controller Assembly Drawing NOTES


-





APPENDIX B DRIVE SETUPS

DRAWING NUMBER

SU-053002 SU-053004 SU-053006 SU-053008 DESCRIPTION

Drive Setup, INGD-0300 Drive Setup, INGD-0850 Drive Setup, INGD-1800 Drive Setup, INGD-4400

SU-053002 INGD-0300

		User Constant Cn-00 to C			Octing	/	
	ER TANT Bit No.	CONTENTS	UNIT	LOWER LIMIT	UPPER LIMIT	DEFAULT SETTING	APPLICATION SETTING
	0	- Jog					
	1	Speed ref offset adjust	mV	0	± 50	•	▲
	2	Clear fault history					
Cn-00	3	A.XXX B.XXX	mV	o	± 50	•	•
	4	A.XXX B.XXX	•	o		¢	¢
	5	F.0503 Y.0000 P.0000	Motor # Modif #				
	0	SV • ON Mask	bit	0	1	0	0
	1	SEN Mask	bit	0	1	0	0
	2	P-OT Mask	bit	0	1	0	0
	3	N-OT Mask	bit	0	1	0	0
	4	IN-A Mask	bit	0	1	0	0
	5	IN-B Mask	bit	0	1	0	0
	6	Coasting to a stop/DB stop	bit	0	1	o	0
	7	DB ON/OFF after Stop	bit	0	1	0	0
Cn-01	8	OT Zero Speed Stop	bit	0	1	0	0
	9	Zero Clamp after OT Stop	bit	0	1	0	0
	A		hit		1		0
	В	Control Mode Selection	bit	0		0	
	с						0
	D	Mode Switch Selection	bit	0	1	0	0
	E	Braking Command Selection	bit	0	1	0	0
	F	Multi-turn Data Clear	bit	0	1	0	0
Cn-02	0	Reverse Rotation Mode	bit	0	1	0	0
Cn-03		IN-B Input Adjustment [(r/min)/V]	r/min/V	0	2000	150	375
Cn-04		Speed Loop Gain [Hz]	Hz	20	500	40	120
Cn-05		Speed Loop Integral Time Constant	ms	2	512	20	10
Cn-06		Emergency Stop Torque	%	0	ΜΑΧ τ	283	283
Cn-07		Soft Start Time	ms	0	10000	0	0
Cn-08		Forward Torque Limit [%]	%	0	ΜΑΧ <i>τ</i>	283	283

User Constant Cn-00 to Cn-17 (Constant Setting)

INDUSTRIAL INDEXING SYSTEMS, INC. DIGITAL INCREMENTAL MOTION DEVICES

Cn-09	Reverse Torque Limit [%]	%	0	MAX T	283	283
Cn-0A	PG Frequency Dividing Ratio Setting		1	PG Pulse	8192	1024
Cn-0B	Zero-speed Level (r/min]	r/min	10	200	20	20
Cn-0C	Mode Switch (Torque Reference) [%]	%	0	MAX T	200	200
Cn-0D	Mode Switch (Speed Reference) [r/min]	r/min	0	MAX SPD	0	0
Cn-OE	Mode Switch [10(r/min)/s] (Motor Acceleration Detection)	r/min/s	0	3000	0	0
Cn-0F	Zero-clamp Level [r/min]	r/min	0	100	10	10
Cn-10	JOG Speed [r/min]	r/min	0	MAX SPD	100	100
Cn-11	Number of Encoder Pulses [pulses/rev]	Pulses/rev			8192	8192
Cn-12	Delay Time From Brake Reference (x 10 ms)	ms	0	50	20	20
Cn-13	Torque Reference Gain [1/10 V Rated Torque]	v	10	100	30	30
Cn-14	Speed Limit [r/min]	r/min	0	MAX SPD	3000	3000
Cn-15	Brake Timing (Speed) [r/min]	r/min	0	MAX SPD	100	100
Cn-16	Brake Timing (Time) [r/min]	r/min	10	100	50	50
Cn-17	Torque Reference Filter [x 100 μ s]	μs	0	250	4	4

▲ V between IN-A & IN-B to set to "0" RPM.

Manual speed ref. adjust.

DO NOT ADJUST! Set priorly at factory.

SU-053004 INGD-0850

User Constant Cn-00 to Cn-17 (Constant Setting)

USER CONSTANT				LOWER	UPPER	DEFAULT	APPLICATION
	Bit No.	CONTENTS	UNIT	LIMIT	LIMIT	SETTING	SETTING
	0	- Jog					
	1	Speed ref offset adjust	mV	o	± 50	•	•
	2	Clear fault history					
Cn-00	3	A.XXX B.XXX	mV	0	± 50	-	•
	4	A.XXX B.XXX	•	0		¢	¢
	5	F.0509 Y.0000 P.0004	Motor # Modif #				
	0	SV • ON Mask	bit	0	1	0	o
	1	SEN Mask	bit	0	1	0	o
	2	P-OT Mask	bit	0	1	o	o
	3	N-OT Mask	bit	0	1	0	0
	4	IN-A Mask	bit	0	1	0	o
	5	IN-B Mask	bit	0	1	0	o
	6	Coasting to a stop/DB stop	bit	0	1	0	o
	7	DB ON/OFF after Stop	bit	0	1	0	o
Cn-01	8	OT Zero Speed Stop	bit	0	1	0	o
	9	Zero Clamp after OT Stop	bit	0	1	0	o
	A		bit				
	в	Control Mode Selection		0	1	0	0
	с				-		
	D	Mode Switch Selection	bit	0	1	0	0
	Е	Braking Command Selection	bit	0	1	0	0
	F	Multi-turn Data Clear	bit	0	1	0	0
Cn-02	0	Reverse Rotation Mode	bit	ΓO	1	o	0
Cn-03		IN-B Input Adjustment [(r/min)/V]	r/min/V	0	2000	150	375
Cn-04		Speed Loop Gain [Hz]	Hz	20	500	40	55
Cn-05		Speed Loop Integral Time Constant	ms	2	512	20	30
Cn-06		Emergency Stop Torque	%	0	ΜΑΧ τ	224	224
Cn-07		Soft Start Time	ms	0	10000	0	0
Cn-08		Forward Torque Limit [%]	%	0	ΜΑΧ τ	224	224

INDUSTRIAL INDEXING SYSTEMS, INC. DIGITAL INCREMENTAL MOTION DEVICES

Cn-09	Reverse Torque Limit [%]	%	0	ΜΑΧ τ	224	224
Cn-0A	PG Frequency Dividing Ratio Setting	P/R	1	32768	8192	1024
Cn-0B	Zero-speed Level [r/min]	r/min	10	200	20	20
Cn-0C	Mode Switch (Torque Reference) [%]	%	0	MAX T	200	200
Cn-0D	Mode Switch (Speed Reference) [r/min]	r/min	0	MAX SPD	0	0
Cn-0E	Mode Switch [10(r/min)/s] (Motor Acceleration Detection)	r/min/s	0	3000	0	0
Cn-0F	Zero-clamp Level [r/min]	r/min	ο	100	10	10
Cn-10	JOG Speed [r/min]	r/min	0	MAX SPD	100	100
Cn-11	Number of Encoder Pulses [pulses/rev]	P/R	1	32768	8192	8192
Cn-12	Delay Time From Brake Reference (x 10 ms)	ms	o	50	20	20
Cn-13	Torque Reference Gain [1/10 V Rated Torque]	v	10	100	30	30
Cn-14	Speed Limit [r/min]	r/min	0	MAX SPD	3000	3000
Cn-15	Brake Timing (Speed) [r/min]	r/min	0	MAX SPD	100	100
Cn-16	Brake Timing (Time) [r/min]	r/min	10	100	50	50
Cn-17	Torque Reference Filter [x 100 μ s]	μs	0	250	4	4

▲ V between IN-A & IN-B to set to "0" RPM.

Manual speed ref. adjust.

DO NOT ADJUST! Set priorly at factory.

SU-053006 INGD-1800

		User Constant Cn-00 to C			Setting	/	
	ER TANT Bit No.	CONTENTS	UNIT	LOWER LIMIT	UPPER LIMIT	DEFAULT SETTING	APPLICATION SETTING
	0	- Jog					
	1	Speed ref offset adjust	mV	0	± 50	•	▲
	2	Clear fault history					
Cn-00	3	A.XXX B.XXX	mV	o	± 50	•	•
	4	A.XXX B.XXX	•	0		¢	\$
	5	F.0514 Y.0000 P.0004	Motor # Modif #				
	0	SV • ON Mask	bit	0	1	0	0
	1	SEN Mask	bit	0	1	0	0
	2	P-OT Mask	bit	0	1	0	o
	3	N-OT Mask	bit	0	1	0	0
	4	IN-A Mask	bit	0	1	o	o
	5	IN-B Mask	bit	0	1	o	0
	6	Coasting to a stop/DB stop	bit	0	1	o	0
	7	DB ON/OFF after Stop	bit	0	1	o	o
Cn-01	8	OT Zero Speed Stop	bit	0	1	o	0
	9	Zero Clamp after OT Stop	bit	0	1	o	o
	A		bit	o			
	в	Control Mode Selection			1	0	0
	с						
	D	Mode Switch Selection	bit	0	1	0	0
	Ε,	Braking Command Selection	bit	0	1	o	o
	F	Multi-turn Data Clear	bit	0	1	o	o
Cn-02	0	Reverse Rotation Mode	bit	0	1	o	o
Cn-03		IN-B Input Adjustment [(r/min)/V]	r/min/V	0	2000	150	188
Cn-04		Speed Loop Gain (Hz)	Hz	20	500	40	40
Cn-05		Speed Loop Integral Time Constant	ms	2	512	20	20
Cn-06		Emergency Stop Torque	%	0	ΜΑΧ τ	100	100
Cn-07		Soft Start Time	ms	o	10000	0	0
Cn-08		Forward Torque Limit [%]	%	0	ΜΑΧ τ	100	100

User Constant Cn-00 to Cn-17 (Constant Setting)

Cn-09	Reverse Torque Limit [%]	%	0	ΜΑΧ Τ	100	100
Cn-0A	PG Frequency Dividing Ratio Setting		1	PG Pulse	8192	1024
Cn-0B	Zero-speed Level [r/min]	r/min	10	200	20	20
Cn-0C	Mode Switch (Torque Reference) [%]	%	0	ΜΑΧ τ	200	200
Cn-0D	Mode Switch (Speed Reference) [r/min]	r/min	0	MAX SPD	0	0
Cn-0E	Mode Switch [10(r/min)/s] (Motor Acceleration Detection)	r/min/s	0	3000	0	0
Cn-0F	Zero-clamp Level [r/min]	r/min	0	100	10	10
Cn-10	JOG Speed [r/min]	r/min	0	MAX SPD	100	100
Cn-11	Number of Encoder Pulses [pulses/rev]	Pulses/rev			8192	8192
Cn-12	Delay Time From Brake Reference (x 10 ms)	ms	0	50	20	20
Cn-13	Torque Reference Gain [1/10 V Rated Torque]	v	10	100	30	38
Cn-14	Speed Limit [r/min]	r/min	0	MAX SPD	1500	1500
Cn-15	Brake Timing (Speed) [r/min]	r/min	0	MAX SPD	100	100
Cn-16	Brake Timing (Time) [r/min]	r/min	10	100	20	20
Cn-17	Torque Reference Filter [x 100 μ s]	μs	0	250	4	4

▲ V between IN-A & IN-B to set to "O" RPM.

Manual speed ref. adjust.

DO NOT ADJUST! Set priorly at factory.

SU-053008 INGD-4400

User Constant Cn-00 to Cn-17 (Constant Setting)								
	SER STANT	CONTENTS	UNIT	LOWER LIMIT	UPPER LIMIT	DEFAULT SETTING	APPLICATION SETTING	
	Bit No.							
	0	- Jog					,	
	1	Speed ref offset adjust	mV	0	± 50	•	A	
	2	Clear fault history						
Cn-00	3	A.XXX B.XXX	mV	0	± 50			
	4	A.XXX B.XXX	•	0	± 50	¢	¢	
	5	F.052C Y.0000 P.0004	Motor # Modif #					
	0	SV • ON Mask	bit	0	1	o	0	
	1	SEN Mask	bit	0	1	o	o	
	2	P-OT Mask	bit	0	1	0	o	
	3	N-OT Mask	bit	0	1	o	0	
	4	IN-A Mask	bit	o	1	o	0	
	5	IN-B Mask	bit	0	1	o	o	
	6	Coasting to a stop/DB stop	bit	0	1	o	0	
	7	DB ON/OFF after Stop	bit	0	1	o	0	
Cn-01	8	OT Zero Speed Stop	bit	0	1	o	o	
	9	Zero Clamp after OT Stop	bit	0	1	o	0	
	Α							
	в	Control Mode Selection	bit	0	1	0	0	
	с							
	D	Mode Switch Selection	bit	0	1	0	0	
	E	Braking Command Selection	bit	o	1	о	0	
	F	Multi-turn Data Clear	bit	ο	1	0	0	
Cn-02	0	Reverse Rotation Mode	bit	o	1	0	0	
Cn-03		IN-B Input Adjustment [(r/min)/V]	r/min/V	0	2000	150	312	
Cn-04		Speed Loop Gain [Hz]	Hz	20	500	40	40	
Cn-05		Speed Loop Integral Time Constant	, ms	2	512	20	20	
Cn-06		Emergency Stop Torque	%	0	ΜΑΧ τ	212	212	
Cn-07		Soft Start Time	ms	0	10000	o	0	
Cn-08		Forward Torque Limit [%]	%	0	MAX T	212	212	

User Constant Cn-00 to Cn-17 (Constant Setting)

Cn-09	Reverse Torque Limit [%]	%	0	ΜΑΧ τ	212	212
Cn-0A	PG Frequency Dividing Ratio Setting		1	PG Pulse	8192	1024
Cn-0B	Zero-speed Level [r/min]	r/min	10	200	20	20
Cn-0C	Mode Switch (Torque Reference) [%]	%	0	ΜΑΧ τ	200	200
Cn-0D	Mode Switch (Speed Reference) [r/min]	r/min	0	MAX SPD	0	0
Cn-0E	Mode Switch [10(r/min)/s] (Motor Acceleration Detection)	r/min/s	0	3000	0	0
Cn-0F	Zero-clamp Level [r/min]	r/min	0	100	10	10
Cn-10	JOG Speed [r/min]	r/min	0	MAX SPD	100	100
Cn-11	Number of Encoder Pulses [pulses/rev]	Pulses/rev			8192	8192
Cn-12	Delay Time From Brake Reference (x 10 ms)	ms	0	50	20	20
Cn-13	Torque Reference Gain [1/10 V Rated Torque]	v	10	100	30	30
Cn-14	Speed Limit [r/min]	r/min	0	MAX SPD	3000	3000
Cn-15	Brake Timing (Speed) [r/min]	r/min	0	MAX SPD	100	100
Cn-16	Brake Timing (Time) [r/min]	r/min	10	100	50	50
Cn-17	Torque Reference Filter [x 100 μ s]	μs	0	250	4	4

▲ V between IN-A & IN-B to set to "O" RPM.

Manual speed ref. adjust.

DO NOT ADJUST! Set priorly at factory.

APPENDIX C PWRPAK[™] SPECIFICATIONS

PWRPAK[™] List of Materials

PWRPAK[™] Specifications

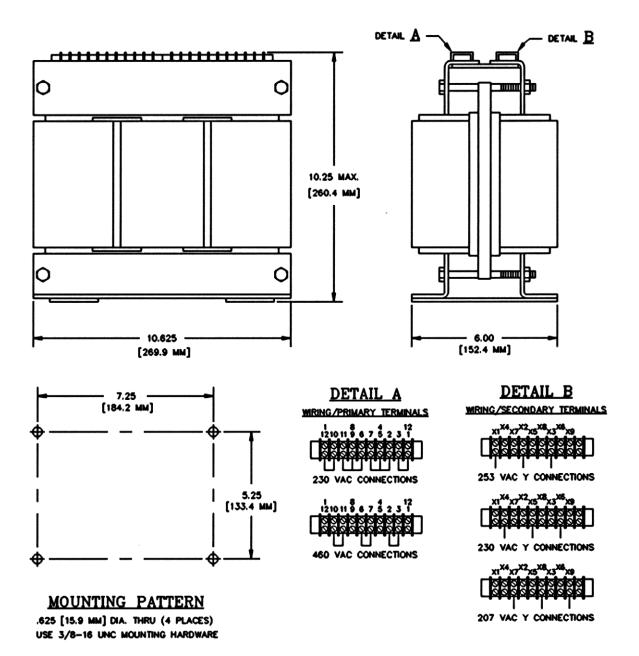
PWRPAK™ LIST OF MATERIALS

DESCRIPTION	TRANSFORMER	MANUAL
PWRPAK5-1000	T-300/3-3	IB-14B005
PWRPAK5-1500	T-300/5-3	IB-148005
PWRPAK5-2200	T-300/7.5-3	IB-14B005
PWRPAK5-2250	TE-300/7.5-3	IB-14B005
PWRPAK5-4500	TE-300/15-3	IB-14B005
PWRPAK5-9000	TE-300/30-3	IB-148005
PWRPAK5-15000	TE-300/58-3	IB-14B005
PWRPAK5-22500	TE-300/75-3	IB-14B005
PWRPAK5-28500	TE-300/95-3	IB-14B005

TRANSFORMER	OUTPUT POWER (Watte)	INPUT PHASES		PM*	FS*	TERM	MARY MINAL RENT mps]	Т	CONDA ERMINA CURREN (Amps)	NL.
					230 VAC	460 VAC	253 VAC	230 VAC	207 VAC	
T-300/3-3	1000	3	x		3	6	з	з	3	
T-300/5-3	1500	з	X		5	2.5	5	5	5	
T-300/7.5-3	2200	3	x		7.5	3.7	7.5	7.5	7.5	
TE-300/7.5-3	2250	з		x	7.5	3.7	6.8	7.5	8.3	
TE-300/15-3	4500	3		x	15	7.5	13.7	15	16.7	
TE-300/30-3	9000	з		x	30	15	27.4	30	33.5	
TE-300/58-3	15000	3		x	57.7	28.8	52.5	57. 7	64.1	
TE-300/75-3	22500	3		x	67.7	33.9	61.6	67. 8	75.3	
TE-300/95-3	28500	3		X	95	47.5	86.4	95	105	

PWRPAK[™] SPECIFICATIONS

*NOTE: PM = Panel Mount, FS = Free-standing


NOTES

APPENDIX D PWRPAK[®] DIMENSIONS AND CONNECTIONS

Panel-mount Transformer Dimensions and Connections

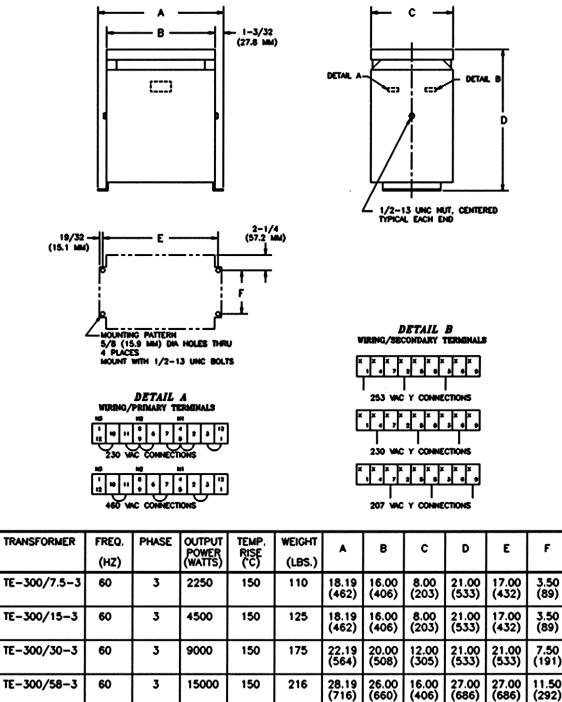
Free-standing Transformer Dimensions and Connections

PANEL-MOUNT TRANSFORMER DIMENSIONS AND CONNECTIONS

TRANSFORMER	FREQ.	PHASE	OUTPUT	TEMP.	WEIGHT
	(HZ)		POWER (WATTS)	RISE (*C)	(LBS.)
T-300/3-3	60	3	1000	150	80
T-300/5-3	60	3	1500	150	80

3

60


2200

150

80

T-300/7.5-3

FREE-STANDING TRANSFORMER DIMENSIONS AND CONNECTIONS

DIMENSIONS = INCHES (MILLIMETERS)											
TE-300/95-3	60	3	28500	150	400	28.19 (716)	26.00 (660)	16.00 (406)	27.00 (686)		
TE-300/75-3	60	3	22500	150	400	28.19 (716)	26.00 (660)	16.00 (406)	27.00 (686)		
TE-300/58-3	60	3	15000	150	216	28.19 (716)	26.00 (660)	16.00 (406)	27.00 (686)		

F

3.50

11.50

(292)

11.50

(292)

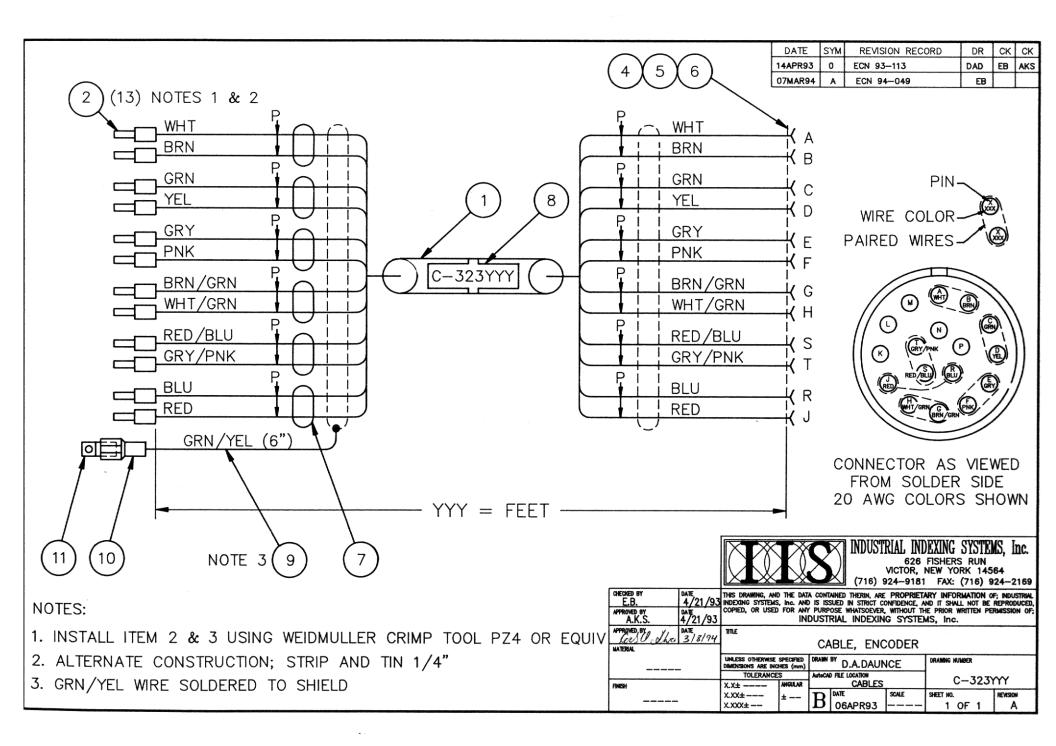
27.00

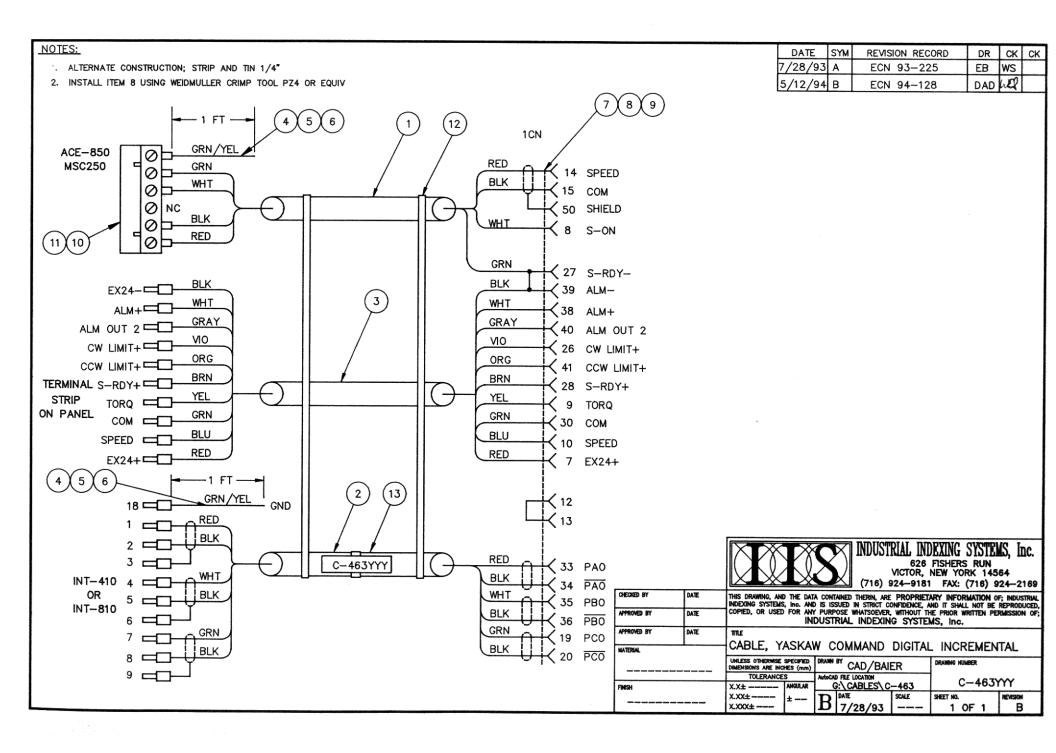
(686)

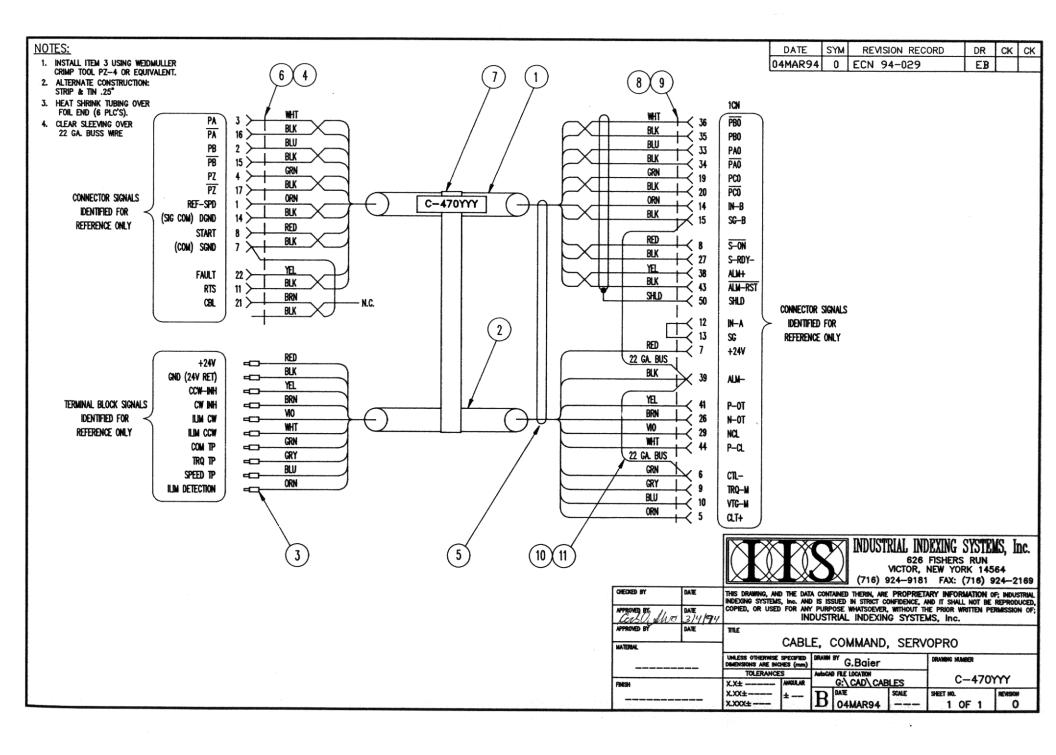
27.00

(686)

NOTES

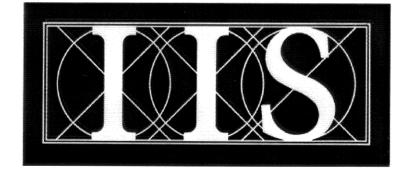

APPENDIX E CONNECTING CABLES


DRAWING NUMBER


DESCRIPTION

C-323YYY	
C-463YYY	
C-470YYY	
C-663YYY	
C-665YYY	
C-673YYY	

Cable, Encoder Cable, Command, Digital Incremental Cable, Command, ServoPro Cable, Motor Cable, Motor Cable, Motor NOTES


NOTES:			D	ATE SYM RE	VISION RECORD	DR CK CK
1. INSTALL ITEMS 3 & 4 USING WEIDMULLER CRIMP TOOL PZ-4 OR EQUIVALENT.						
2. ALTERNATE CONSTRUCTION: STRIP & TIN .25"						
3. PIN NUMBERS SHOWN FOR REFERENCE ONLY.	(3)		2 5	6)		
4. INSTALL PINS FROM ITEM 2 USING DMC TOOL NO. M22520 OR EQUIVALENT.						
	WHT/VIO		MHT/VIO	` ∧		
			WHT/BRN	- K ∎		
		C-663 YYY	WHT/ORN	┽°		
	GRN/YEL		GRN/YEL	⊀₽		
(4)						
		YYY (FEET)	•••••••••••••••••••••••••••••••••••••••			
		Г	DLERANCES		IAL INDEXING	SALLENS
		x	(± AutoCAD FILE LOCA	TION		
		Ai ±	NGULAR MLE	CABLE,	MOTOR	1
		12	те знет ко. 2/1 4/90 1 О Г 1	DRAWING HUMBER	-663YYY	REMISION

NOTES:		8	DATE S ^V /10/93 0	YM REVISION RE D ECN-93-26		ск сн
1) ALTERNATE CONSTRUCTION STRIP & TIN 1/4"						
2) CRIMP FERRULES USING WEIDMULLER CRIMP TOOL 'PZ4' OR EQUIVALENT						
(2) SEE NOTES 1 & 2 (3)	4)6)7) SI	EE NOTES	5 1 & 2	2		
				-		
	WHT BLK		3			
GRN STRIP 3"	GRN					
YYY (FEET) ———————————————————————————————————						
			ß		NDEXING SYST 6 FISHERS RUN , NEW YORK 14 81 FAX: (716)	564
APPI	CAPD BY DATE PARE BY DATE ROVED BY DATE ROVED BY DATE		FOR ANY PURP INDUST	AINED THERIN, ARE PROPRI SUED IN STRICT CONFIDENCE OSE WHATSOEVER, WITHOUT RIAL INDEXING SYST	ETARY INFORMATION AND IT SHALL NOT B THE PRIOR WRITTEN I	
	ROYED BT DAILE	UNLESS OTHERWISE DIMENSIONS ARE INC	SPECIFIED DRAWN	ABLE, MOTOR	DRAWNG NUMBER	Martini (d., 1814.)
Page 1		DIMENSIONS ARE INC TOLERANCE X.X± X.XX±	S AutoCAD ANGULAR	G:\ CAD\ CABLE	С-665	REMISION
		X.XXX±	B	date scale 8/12/93		0

.

NOTES:	DATE SYM REVISION RECORD DR CK CK 6/29/93 0 ECN 93-172 EB 6/2/94 A ECN 94-134 DAD
 INSTALL ITEM 3 USING WEIDMULLER CRIMP TOOL PZ-4 OR EQUIVALENT. 	
2. ALTERNATE CONSTRUCTION: STRIP & TIN .25"	$\begin{pmatrix} 2 \\ \end{pmatrix} \qquad \begin{pmatrix} 1 \\ \end{pmatrix} \begin{pmatrix} 5 \\ 3 \\ 4 \end{pmatrix}$
3. PIN NUMBERS SHOWN FOR REFERENCE ONLY.	
 INSTALL PINS FROM ITEM 3 USING DMC TOOL NO. M22520 OR EQUIVALENT. 	
OK EQUIVALENI.	
	BLACK C C-673YYY BLACK C
	YYY (LENGTH IN FEET)
	INDUSTRIAL INDEXING SYSTEMS, Inc.
	EB DATE 3/94 THIS DRAWING, AND THE DATA CONTAINED THERIN, ARE PROPRIETARY INFORMATION OF; INDUSTRIAL, INDUSTRIAL, Inc. AND IS ISSUED IN STRUCT COMPOSICE, AND IT SHOULD NOT BE REPRODUCED.
	APPROVED BY DATE COPIED, OR USED FOR ANY PURPOSE WHATSOEVER, WITHOUT THE PRIOR WRITTEN PERMISSION OF; INDUSTRIAL INDEXING SYSTEMS, Inc. APPROVED BY DATE TITLE
	INATERIAL UNLESS OTHERWISE SPECIFIED DRAWN BY CAD DAWING MUMBER DIMENSIONS ARE INCHES (mm) AutoCAD FLE LOCATION C
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

INDUSTRIAL INDEXING SYSTEMS INC.

626 FISHERS RUN VICTOR, NEW YORK 14564

(585) 924-9181 FAX: (585) 924-2169

PRINTED IN USA © 1993			